PSI - Issue 38

Michaela Zeißig et al. / Procedia Structural Integrity 38 (2022) 60–69 Zeißig, Jablonski / Structural Integrity Procedia 00 (2021) 000–000

69

10

Leopold, G., Nadot, Y., 2010. Fatigue from an Induced Defect: Experiments and Application of Different Multiaxial Fatigue. J. ASTM Int. 7 (4), 371-393. Leuders, S., Lieneke, T., Lammers, S., Tröster, T., Niendorf, T., 2014. On the fatigue properties of metals manufactured by selective laser melting – The role of ductility. Journal of Materials Research 29 (17), 1911-1919. Liang, X., 2020. High cycle fatigue behavior of additive manufactured stainless steel 316L: free surface effect and microstructural heterogeneity. PhD thesis, HESAM Université. Lindström, T., Eriksson, R., Ewest, D., Simonsson, K., Lundgren, J.-E., Leidermark, D., Hénaff, G., 2018. Crack initiation prediction of additive manufactured ductile nickelbased superalloys. MATEC Web Conf. 165, 04013. Macherauch, E., Kloos, K.-H., 1982. Bewertung von Eigenspannungen. Härterei-Technische Mitteilungen, Beiheft Eigenspannungen und Lastspannungen, Moderne Ermittlung – Ergebnisse – Bewertung, 175-194. Mercelis, P., Kruth, J.-P., 2006. Residual stresses in selective laser sintering and selective laser melting. Rapid Prototyping Journal 12 (5), 254 265. Murakami, Y., 2002. Metal Fatigue: Effects of Small Defects and nonmetallic Inclusions. Elsevier, Amsterdam [a.o.]. Nadot, Y., Mendez, J., 2008. Fatigue Design of Metallic Components Containing Surface or Internal Defects. 26th International Congress of the Aeronautical Sciences. Nadot, Y., Nadot-Martin, C., Kan, W. H., Boufadene, S., Foley, M., Cairney, J., Proust, G., Ridosz, L., 2020. Predicting the fatigue life of an AlSi10Mg alloy manufactured via laser powder bed fusion by using data from computed tomography. Additive Manufacturing 32 (3), 100899. Radaj, D., Vormwald, M., 2007. Ermüdungsfestigkeit (Grundlagen für Ingenieure). Springer-Verlag Berlin Heidelberg, Berlin, Heidelberg. Snyder, J. C., Stimpson, C. K., Thole, K. A., Mongillo, D. J., 2015. Build Direction Effects on Microchannel Tolerance and Surface Roughness. J. Mech. Des 137 (11), 111411. Thijs, L., 2014. Microstructure and texture of metal parts produced by Selective Laser Melting. PhD thesis, KU Leuven. Vincent, M., Nadot, Y., Nadot-Martin, C., Dragon, A., 2014. A surface defect versus microstructure under fatigue loading: Experimental and numerical approach. MATEC Web of Conferences 12, 08001. Vincent, M., Nadot-Martin, C., Nadot, Y., Dragon, A., 2014. Fatigue from defect under multiaxial loading. Defect Stress Gradient (DSG) approach using ellipsoidal Equivalent Inclusion Method. International Journal of Fatigue 59, 176–187. Vrancken, B., 2016. Study of Residual Stresses in Selective Laser Melting. PhD thesis, KU Leuven. Wang, D., Liu, Y, Yang, Y., Xiao, D., 2016. Theoretical and experimental study on surface roughness of 316L stainless steel metal parts obtained through selective laser melting. Rapid Prototyping Journal 22 (4), 706-716. Weibull, W., 1939. A statistical theory of the strength of materials. Proc. Roy. Swed. Inst. f. Eng. Res. No. 151, Generalstabens Litografiska Anstalts Förlag, Stockholm. Weibull, W., 1951. A Statistical Distribution Function of Wide Applicability. Journal of Applied Mechanics, Transactions of the American Society Of Mechanical Engineers, 293-297. Yusuf, S., Chen, Y., Boardman, R., Yang, S., Gao, N., 2017. Investigation on Porosity and Microhardness of 316L Stainless Steel Fabricated by Selective Laser Melting. Metals 7(2). Zhang, B., Li, Y., Bai, Q., 2017. Defect Formation Mechanisms in Selective Laser Melting: A Review. Chi. J. Mech. Eng. 30, 515–527. Zhang, M., Sun, C.-N., Zhang, X., Goh, P. C., Wei, J., Li, H., Hardacre, D., 2017. Competing Influence of Porosity and Microstructure on the Fatigue Property of Laser Powder Bed Fusion Stainless Steel 316L. Solid Freeform Fabrication 2017: Proceedings of the 28th Annual Solid Freeform Fabrication Symposium – An Additive Manufacturing Conference, 365-376. Zhang, Y., Jung, Y.-G., Zhang, J., 2020. Multiscale Modeling of Additively Manufactured Metals - Application to laser powder bed fusion process. Elsevier, Amsterdam, Oxford, Cambridge.

Made with FlippingBook Digital Publishing Software