PSI - Issue 35

Available online at www.sciencedirect.com Available online at www.sciencedirect.com Available online at www.sciencedirect.com

ScienceDirect

Procedia Structural Integrity 35 (2022) 91–97 Structural Integrity Procedia 00 (2021) 000–000 Structural Integrity Procedia 00 (2021) 000–000

www.elsevier.com / locate / procedia www.elsevier.com / locate / procedia

© 2021 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (https://creativecommons.org/licenses/by-nc-nd/4.0) Peer-review under responsibility of IWPDF 2021 Chair, Tuncay Yalçinkaya Abstract Due to their superior strength-to-weight performance, there is an increasing tendency to use carbon fibre reinforced composites (CFRP) in di ff erent engineering applications. Under transverse loading, the resulting stress-strain curve has a nonlinear character with significant hardening. As far as modelling of CFRP is concerned, the hardening behaviour is typically described by fitting curves to experimental data. Obviously, this route does not take deformation mechanisms at constituent level e.g. fibre rotation and matrix yielding, into account and leads to descriptive models rather than predictive ones. Such models yield poor predictions particularly for CFRP’s with 3D microstructural architectures, which have achieved much higher ductility level and texture evo lution as compared to conventional 2D architectures. In recent studies Meza et al. (2019), Tan and Liu (2020), motivated by the similarity between the shearing along slip planes and the plastic deformation of a tow, crystal plasticity is exploited to capture the evolution of the composite microstructure. This contribution focuses on the crystal plasticity inspired model of CFRP and its implementation within the commercial finite element software Abaqus through UEL subroutine. The predictions of the model are assessed by means of two example problems including combined loading scenarios. 2021 The Authors. Published by Elsevier B.V. is is an open access article under the CC BY-NC-ND license (http: // creativec mmons.org / licenses / by-nc-nd / 4.0 / ) er-review under responsibility of IWPDF 2021 Chair, Tuncay Yalc¸inkaya. Keywords: Composite mechanics; crystal plasticity; fiber reinforced plastics; 2nd International Workshop on Plasticity, Damage and Fracture of Engineering Materials Crystal Plasticity Based odelling of Shear Response of Carbon Fibre Reinforced Composites E. A. Dizman a , ˙I. O¨ zdemir b, ∗ a I˙zmir Katip C¸ elebi University, Faculty of Engineering and Architecture, Department of Civil Engineering, 35620, C¸ ig˘ li, I˙zmir, Turkey b I˙zmir Institute of Technology, Faculty of Engineering, Department of Civil Engineering, 35430, Urla, I˙zmir, Turkey Abstract Due to their superior strength-to-weight performance, there is an increasing tendency to use carbon fibre reinforced composites (CFRP) in di ff erent engineering applications. Under transverse loading, the resulting stress-strain curve has a nonlinear character with significant hardening. As far as modelling of CFRP is concerned, the hardening behaviour is typically described by fitting curves to experimental data. Obviously, this route does not take deformation mechanisms at constituent level e.g. fibre rotation and matrix yielding, into account and leads to descriptive models rather than predictive ones. Such models yield poor predictions particularly for CFRP’s with 3D microstructural architectures, which have achieved much higher ductility level and texture evo lution as compared to conventional 2D architectures. In recent studies Meza et al. (2019), Tan and Liu (2020), motivated by the similarity between the shearing along slip planes and the plastic deformation of a tow, crystal plasticity is exploited to capture the evolution of the composite microstructure. This contribution focuses on the crystal plasticity inspired model of CFRP and its implementation within the commercial finite element software Abaqus through UEL subroutine. The predictions of the model are assessed by means of two example problems including combined loading scenarios. © 2021 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http: // creativecommons.org / licenses / by-nc-nd / 4.0 / ) Peer-review under responsibility of IWPDF 2021 Chair, Tuncay Yalc¸inkaya. Keywords: Composite mechanics; crystal plasticity; fiber reinforced plastics; 2nd International Workshop on Plasticity, Damage and Fracture of Engineering Materials Crystal Plasticity Based Modelling of Shear Response of Carbon Fibre Reinforced Composites E. A. Dizman a , ˙I. O¨ zdemir b, ∗ a I˙zmir Katip C¸ elebi University, Faculty of Engineering and Architecture, Department of Civil Engineering, 35620, C¸ ig˘ li, I˙zmir, Turkey b I˙zmir Institute of Technology, Faculty of Engineering, Department of Civil Engineering, 35430, Urla, I˙zmir, Turkey

1. Introduction 1. Introduction

Reducing the weight of structural members is typically achieved by optimizing the components in size and topology and by using materials with higher specific sti ff ness and strength such as carbon fiber reinforced plastics (CFRP). Under transverse loading, components made of CFRP’s show a nonlinear hardening behaviour which can provide some additional safety margin provided that it is well understood. As reported in Cui et al. (2016) and Koerber et al. (2010), shear dominated loading scenarios are not rare as typically observed in tensile or compressive loading on Reducing the weight of structural members is typically achieved by optimizing the components in size and topology and by using materials with higher specific sti ff ness and strength such as carbon fiber reinforced plastics (CFRP). Under transverse loading, components made of CFRP’s show a nonlinear hardening behaviour which can provide some additional safety margin provided that it is well understood. As reported in Cui et al. (2016) and Koerber et al. (2010), shear dominated loading scenarios are not rare as typically observed in tensile or compressive loading on

∗ Corresponding author. Tel.: + 90-232-750-6810 ; fax: + 90-232-750-6801. E-mail address: izzetozdemir@iyte.edu.tr ∗ Corresponding author. Tel.: + 90-232-750-6810 ; fax: + 90-232-750-6801. E-mail address: izzetozdemir@iyte.edu.tr

2452-3216 © 2021 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (https://creativecommons.org/licenses/by-nc-nd/4.0) Peer-review under responsibility of IWPDF 2021 Chair, Tuncay Yal ç inkaya 10.1016/j.prostr.2021.12.052 2210-7843 © 2021 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http: // creativecommons.org / licenses / by-nc-nd / 4.0 / ) Peer-review u der responsibility of IWPDF 2021 hair, Tu cay Yalc¸inkaya. 2210-7843 © 2021 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http: // creativecommons.org / licenses / by-nc-nd / 4.0 / ) Peer-review under responsibility of IWPDF 2021 Chair, Tuncay Yalc¸inkaya.

Made with FlippingBook flipbook maker