PSI - Issue 35
Kai Friebertshauser et al. / Procedia Structural Integrity 35 (2022) 159–167
167
K. Friebertsha¨user and M. Werner and K. Weinberg / Structural Integrity Procedia 00 (2021) 000–000
9
Algorithm 1 Time integration with velocity-verlet algorithm Require: n = 0; u = 0; ˙ u = 0; ¨ u = 0; b = 0; L u = 0 1: ˙ u , b ← initial conditions 2: for all time steps n do 3: for all material points k ∈ B do 4: ˙ u n + 1 2 k = u k n + 1 / 2 ∆ t ¨ u n k 5: ˙ u n + 1 2 k , b n + 1 k ← boundary conditions 6: u n + 1 k = u n k + ∆ t ˙ u n + 1 2 k 7: L n + 1 u , k ← evaluate Eq. (6) 8: ¨ u n + 1 k = 1 / ρ k L n + 1 u , k + b n + 1 k 9: ˙ u n + 1 k = ˙ u n + 1 2 k + 1 / 2 ∆ t ¨ u n + 1 k
References
Bilgen, C., Weinberg, K., 2021. Phase-field approach to fracture for pressurized and anisotropic crack behavior. International Journal of Fracture To appear. Chen, Z., Bunger, A.P., Zhang, X., Je ff rey, R.G., 2009. Cohesive zone finite element-based modeling of hydraulic fractures. Acta Mechanica Solida Sinica 22, 443–452. doi: 10.1016/S0894-9166(09)60295-0 . Lecampion, B., Bunger, A., Zhang, X., 2018. Numerical methods for hydraulic fracture propagation: A review of recent trends. Journal of Natural Gas Science and Engineering 49, 66–83. doi: https://doi.org/10.1016/j.jngse.2017.10.012 . Littlewood, D.J., 2015. Roadmap for Peridynamic Software Implementation. Technical Report SAND2015–9013, 1226115. Sandia National Laboratories. URL: http://www.osti.gov/servlets/purl/1226115/ , doi: 10.2172/1226115 . Luo, C., Ehlers, W., 2015. Hydraulic fracturing based on the theory of porous media. PAMM 15, 401–402. doi: https://doi.org/10.1002/ pamm.201510191 . Madenci, E., Oterkus, E., 2014. Peridynamic Theory and Its Applications. Springer New York, New York. doi: 10.1007/978-1-4614-8465-3 . Miehe, C., Mauthe, S., 2016. Phase field modeling of fracture in multi-physics problems. part iii. crack driving forces in hydro-poro-elasticity and hydraulic fracturing of fluid-saturated porous media. Computer Methods in Applied Mechanics and Engineering 304, 619–655. doi: https: //doi.org/10.1016/j.cma.2015.09.021 . Mikelic´, A., Wheeler, M.F., Wick, T., 2015. Phase-field modeling of a fluid-driven fracture in a poroelastic medium. Computational Geosciences 19, 1171–1195. doi: 10.1007/s10596-015-9532-5 . Nadimi, S., Miscovic, I., McLennan, J., 2016. A 3d peridynamic simulation of hydraulic fracture process in a heterogeneous medium. Journal of Petroleum Science and Engineering 145, 444–452. doi: https://doi.org/10.1016/j.petrol.2016.05.032 . Nadimi, S., Miskovic, I., 2015. A peridynamic simulation of hydraulic fracture phenomena in shale reservoirs. GEOPROC Conference 2015 . Ouchi, H., Katiyar, A., Foster, J.T., Sharma, M.M., 2015. A Peridynamics Model for the Propagation of Hydraulic Fractures in Heterogeneous, Naturally Fractured Reservoirs doi: 10.2118/SPE-173361-MS . d011S001R006. Pandolfi, A., De Bellis, M.L., Vecchia, G.D., 2016. A Multiscale Microstructural Model of Permeability in Fractured Solids. Springer International Publishing, Cham. pp. 265–283. doi: 10.1007/978-3-319-39022-2-12 . Sheng, M., Li, G., Sutula, D., Tian, S., Bordas, S.P., 2018. Xfem modeling of multistage hydraulic fracturing in anisotropic shale formations. Journal of Petroleum Science and Engineering 162, 801–812. doi: https://doi.org/10.1016/j.petrol.2017.11.007 . Silling, S.A., 2000. Reformulation of elasticity theory for discontinuities and long-range forces. Journal of the Mechanics and Physics of Solids 48, 175 – 209. doi: https://doi.org/10.1016/S0022-5096(99)00029-0 . Silling, S.A., Epton, M., Weckner, O., Xu, J., Askari, E., 2007. Peridynamic States and Constitutive Modeling. Journal of Elasticity 88, 151–184. URL: http://link.springer.com/10.1007/s10659-007-9125-1 , doi: 10.1007/s10659-007-9125-1 . Sneddon, I.N., Mott, N.F., 1946. The distribution of stress in the neighbourhood of a crack in an elastic solid. Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences 187, 229–260. doi: 10.1098/rspa.1946.0077 . Wilson, Z.A., Landis, C., 2016. Phase-field modeling of hydraulic fracture. Journal of The Mechanics and Physics of Solids 96, 264–290. Zilch, K., Zehetmaier, G., 2010. Bemessung im konstruktiven Betonbau. Springer Berlin Heidelberg.
Made with FlippingBook flipbook maker