PSI - Issue 35

Andreas Seupel et al. / Procedia Structural Integrity 35 (2022) 10–17 A. Seupel et al. / Procedia Structural Integrity 00 (2021) 000–000

17

8

Acknowledgements

The authors gratefully acknowledge the German Research Foundation (DFG) for funding the research in the frame work of the Collaborative Research Center ”TRIP-Matrix-Composite”, (project number 54473466 – CRC 799, C5).

References

Andrade-Campos, A., Teixeira-Dias, F., Gra´cio, J., 2005. Modelling the e ff ect of strain rate on the thermomechanical behaviour of AISI 304 stainless steel. Materialwissenschaft Und Werksto ff technik 36, 566–571. Boyce, B.L., Crenshaw, T.B., Dilmore, M.F., 2007. The Strain-Rate Sensitivity of High-Strength High-Toughness Steels. Technical Report SAND2007-0036. Sandia National Laboratories. Albuquerque, New Mexico 87185 and Livermore, California 94550. Bruhns, O.T., 2020. Large deformation plasticity - From basic relations to finite deformation. Acta Mechanica Sinica 36, 472–492. Clausen, A.H., Borvik, T., Hopperstad, O.S., Benallal, A., 2004. Flow and fracture characteristics of aluminium alloy AA5083–H116 as function of strain rate, temperature and triaxiality. Materials Science and Engineering A 364, 260–272. Davaze, V., Vallino, N., Feld-Payet, S., Langrand, B., Besson, J., 2020. Plastic and fracture behavior of a dual phase steel sheet under quasi-static and dynamic loadings. Engineering Fracture Mechanics 235. Iwamoto, T., Tsuta, T., Tomita, Y., 1998. Investigation on deformation mode dependence of strain-induced martensitic transformation in TRIP steels and modelling of transformation kinetics. International Journal of Mechanical Sciences 40, 173–182. Jia, B., Rusinek, A., Pesci, R., Bahi, S., Bernier, R., 2020. Thermo-viscoplastic behavior of 304 austenitic stainless steel at various strain rates and temperatures: testing, modeling and validation. International Journal of Mechanical Sciences 170, 105356. Kru¨ger, L., Wolf, S., Martin, U., Scheller, P., Jahn, A., Weiß, A., 2009. Strain rate and temperature e ff ects on stress-strain behaviour of cast high alloyed CrMnNi-steel, in: DYMAT 2009, EDP Sciences. pp. 1069–1074. Kulawinski, D., Ackermann, S., Seupel, A., Lippmann, T., Henkel, S., Kuna, M., Weidner, A., Biermann, H., 2015. Deformation and strain hardening behavior of powder metallurgical TRIP steel under quasi-static biaxial-planar loading . Materials Science & Engineering A 642, 317–329. Langseth, M., Lindholm, U.S., Larsen, P.K., Lian, B., 1991. Strain rate sensitivity of mild steel grade St52-3N. Journal of Engineering Mechanics 117, 719–732. Miller, M.P., McDowell, D.L., 1996. Modeling large strain multiaxial e ff ects in fcc polycrystals. International Journal of Plasticity 12, 875–902. Olson, G.B., Cohen, M., 1975. Kinetics of strain-induced martensitic nucleation. Metallurgical Transactions A 6A, 791–795. Pru¨ger, S., Kuna, M., Wolf, S., Kru¨ger, L., 2011. A material model for TRIP-steels and its application to a CrMnNi cast alloy. Steel Research International 82, 1070–1079. Pru¨ger, S., Seupel, A., Kuna, M., 2014. A thermomechanically coupled material model for TRIP-steel. International Journal of Plasticity 55, 182–197. Rafaja, D., Ullrich, C., Motylenko, M., Martin, S., 2020. Austenitic TRIP / TWIP Steels and Steel-Zirconia Composites. Springer International Pub lishing. Volume 298 of Springer Series in Materials Science . Chapter: Microstructure Aspects of the Deformation Mechanisms in Metastable Autenitic Steels. pp. 325–377. Seupel, A., Burgold, A., Pru¨ger, S., Budnitzki, M., Kuna, M., 2020. Austenitic TRIP / TWIP Steels and Steel-Zirconia Composites. Springer International Publishing. Volume 298 of Springer Series in Materials Science . Chapter: Modeling of the Thermomechanical Behavior, Damage, and Fracture of High Alloy TRIP-Steel. pp. 723–769. Seupel, A., Eckner, R., Burgold, A., Kuna, M., Kru¨ger, L., 2016. Experimental characterization and damage modeling of a particle reinforced TWIP-steel matrix composite. Materials Science & Engineering A 662, 342–355. Seupel, A., Kuna, M., 2017. Phenomenological modeling of strain hardening, phase transformation and damage e ff ects of TRIP-steels, in: Pro ceedings of the 14th International Conference on Computational Plasticity - Fundamentals and Applications, COMPLAS 2017, pp. 576–587. Stout, M.G., Follansbee, P.S., 1986. Strain Rate Sensitivity, Strain Hardening, and Yield Behavior of 304L Stainless Steel. Transactions of the ASME 108, 344–353. Wang, W., Ma, Y., Yang, M., Jing, P., Yuan, F., Wu, X., 2018. Strain Rate E ff ect on Tensile Behavior for a High Specific Strength Steel: From Quasi-Static to Intermediate Strain Rates. Metals 8. Wolf, S., 2012. Temperatur- und dehnratenabha¨ngiges Werksto ff verhalten einer hochlegierten CrMnNi-TRIP / TWIP-Stahlgusslegierung unter einsinniger Zug- und Druckbeanspruchung. Ph.D. thesis. TU Bergakademie Freiberg (in German). Wolf, S., Martin, S., Kru¨ger, L., Martin, U., 2014. Constitutive modelling of the rate dependent flow stress of a cast high-alloyed metastable austenitic TRIP / TWIP steel. Materials Science & Engineering A 594, 72–81. Yang, H.K., Zhang, Z.J., Tian, Y.Z., Zhang, Z.F., 2017. Negative to positive transition of strain rate sensitivity in Fe-22Mn-0.6C-x(Al) twinning induced plasticity steels. Materials Science and Engineering A 690, 146–157. Yoo, S.W., Lee, C.S., Park, W.S., Kim, M.H., Lee, J.M., 2011. Temperature and strain rate dependent constitutive model of TRIP steels for low-temperature applications. Computational Materials Science 50, 2014–2027. Zaera, R., Rodr´ıguez-Mart´ınez, J.A., Casado, A., Ferna´ndez-Sa´ez, J., Rusinek, A., Pesci, R., 2012. A constitutive model for analyzing martensite formation in austenitic steels deforming at high strain rates. International Journal of Plasticity 29, 77–101. Zaera, R., Rodr´ıguez-Mart´ınez, J.A., Rittel, D., 2013. On the Taylor-Quinney coe ffi cient in dynamically phase transforming materials. Application to 304 stainless steel. International Journal of Plasticity 40, 185 – 201.

Made with FlippingBook flipbook maker