PSI - Issue 35

Kadir Günaydın et al. / Procedia Structural Integrity 35 (2022) 237 – 246 Author name / Structural Integrity Procedia 00 (2021) 000–000

245

9

References

Lu, G., Yu, T., 2003. Energy Absorption of Structures and Materials, in “ In Woodhead Publishing Series in Metals and Surface Engineering ”. Woodhead Publishing, pp. 144-173. Evans, A. G., Hutchinson, J. W., Fleck, Norman A., Ashby, M. F., Wadley, H. N. G., 2001. The Topological Design of Multifunctional Cellular Metals. Progress in Materials Science 46, 309–327. Evans, K. E., Nkansah, M. A., Hutchinson, I. J., Rogers, S. C., 1991. Molecular Network Design. Nature 353, 124–124. Gunaydin, K., Eren, Z., Scarpa, F., 2017. “Experimental Investigation of Auxetic Structures Subjected to Quasi Static Axial Load,” 2017 8th International Conference on Recent Advances in Space Technologies (RAST). Istanbul, Turkey, 7–10. Gunaydin, K., Eren, Z., Kazanci, Z., Scarpa, F., Grande, A. M., Turkmen, H. S., 2019. In-plane Compression Behavior of Anti-tetrachiral and Re-entrant Lattices. Smart Materials and Structures 28, 115028. Gunaydin K., Turkmen H. S., 2019. “In-Plane Quasi-Static Crushing Finite Element Analysis of Auxetic Lattices,” 2019 9th International Confer ence on Recent Advances in Space Technologies (RAST). Istanbul, Turkey, 645–648. Wu, W., Qi, D., Liao, H., Qian, G., Geng, L., Niu, Y., Liang, J., 2018. Deformation Mechanism of Innovative 3D Chiral Netamaterials. Scientific Reports 8, 1–10. Wu, We., Hu, W., Qian, G., Liao, H., Xu, X., Berto, F., 2019. Mechanical Design and Multifunctional applications of Chiral Mechanical Metama terials: A Review. Materials & Design 180, 107950. Ruan, X. L., Li, J. J., Song, X. K., Zhou, H. J., Yuan, W. X., Wu, W. W., Xia, R., 2018. General Relationship for the Thermal Oxidation of Silicon. International Journal of Applied Mechanics 10, 1850105. Wu, W., Geng, L., Niu, Y., Qi, D., Cui, X., Fang, D., 2018. Mechanical Design ofAntichiral-Reentrant Hybrid Intravascular Stent. Extreme Me chanics Letters 20, 104–111. Ma, C., Lei, H., Liang, J., Wu, W., Wang, T., Fang, D., 2018. Macroscopic Mechanical Response of Chiral-Type Cylindrical Metastructures Under Axial Compression Loading. Materials & Design 158, 198–212. Lakes, R., 1987. Foam Structures with A Negative Poisson’s Ratio. American Association for the Advancement of Science 235, 1038–1041. Zhou, Z., Zhou, J., Fan, H., 2017. Plastic Analyses of Thin-Walled Steel Honeycombs with Re-entrant Deformation Style. Materials Science and Engineering: A 688, 123–133. Chen, Y. J., Scarpa, F., Liu, Y. J., Leng, J. S., 2013. Elasticity of Anti-Tetrachiral Anisotropic Lattices. International Journal of Solids and Structures 50, 996–1004. Assidi, M., and Gangho ff er, J., 2012. Composites with Auxetic Inclusions Showing Both An Auxetic Behavior and Enhancement of Their Mechan ical Properties. Composite Structures 94, 2373–2382. Gonella, S., Ruzzene, M., 2008. Homogenization and Equivalent In-Plane Properties of Two-Dimensional Periodic Lattices. International Journal of Solids and Structures 45, 2897–2915. Bacigalupo, A. and De Bellis, M. L., 2015. Auxetic Anti-Tetrachiral Materials: Equivalent Elastic Properties and Frequency Band-Gaps. Composite Structures 131, 530–544. Huang, J., Zhang, Q., Scarpa, F., Liu, Y., Leng, J., 2017. In-Plane Elasticity of A Novel Auxetic Honeycomb Design. Composites Part B: Engineer ing 110, 72–82. Lorato, A., Innocenti, P., Scarpa, F., Alderson, A., Alderson, K. L., Zied, K. M., Ravirala, N., Miller, W., Smith, C. W., Evans, K. E., 2010. The Transverse Elastic Properties of Chiral Honeycomb. Composites Science and Technology 70, 1057–1063. Lira, C., Scarpa, F., Tai, Y. H., Yates, J. R., 2011. Transverse Shear Modulus of SILICOMB Cellular Structures. Composites Science and Technology 71, 1236–1241. Gunaydin, K., Tamer, A., Turkmen, H. S., Sala, G., Grande, A. M., 2021. Chiral-Lattice-Filled Composite Tubes under Uniaxial and Lateral Quasi-Static Load: Experimental Studies. Applied Sciences 11, 3735. Li, H., Ma, Y., Wen, W., Wu, W., Lei, H., Fang, D., 2017. In Plane Mechanical Properties of Tetrachiral and Antitetrachiral Hybrid Metastructures. Journal of Applied Mechanics 84,8. Wu, W., Tao, Y., Xia, Y., Chen, J., Lei, H., Sun, L., Fang, D., 2017. Mechanical Properties of Hierarchical Anti-Tetrachiral Metastructures. Extreme Mechanics Letters 16, 18–32. Hu, L. L., Wu, Z. J., Fu, M. H., 2009. Mechanical Behavior of Anti-Trichiral Honeycombs Under Lateral Crushing. International Journal of Mechanical Sciences 140, 537–546. Hu, L. L., Luo, Z. R., Zhang, Z. Y., Lian, M. K., Huang, L. S., 2019. Mechanical Property of Re-entrant Anti-Trichiral Honeycombs Under Large Deformation. Composites Part B: Engineering 163, 107–120. Zhang, X., Ding, H., An, L., Wang, X., 2015. Numerical Investigation on Dynamic Crushing Behavior of Auxetic Honeycombs with Various Cell-Wall Angles. Advances in Mechanical Engineering 7, 679678. Ingrole, A., Hao, A., Liang, R., 2017. Design and Modeling of Auxetic and Hybrid Honeycomb Structures for In-Plane Property Enhancement. Materials & Design 117, 72–83. Dong, Z., Li, Y. Zhao, T., Wu, W., Xiao, D., Liang, J., 2019. Experimental and Numerical Studies on The Compressive Mechanical Properties of The Metallic Auxetic Reentrant Honeycomb. Materials & Design 182, 108036. Wu, W., Song, X., Liang, J., Xia, R., Qian, G., Fang, D., 2018. Mechanical Properties of Anti-Tetrachiral Auxetic Stents. Composite Structures 185, 381–392. ABAQUS User Manual, 2020. Gibson, L. J., Ashby, M. F., 1999. Cellular Solids: Structure and Properties. Cambridge University Press. Ko¨ rner, C., 2009. Additive Mnufacturing of Metallic Components by Selective Electron BeamMelting—A Review. International Materials Reviews

Made with FlippingBook flipbook maker