PSI - Issue 33

10

Marcos Sánchez et.al/ Structural Integrity Procedia 00 (2021) 000–000

Marcos Sánchez et al. / Procedia Structural Integrity 33 (2021) 97–106

106

Technol. Trans. ASME 137, 1–10. https://doi.org/10.1115/1.4029925 EL-Bagory, T.M.A.A., Younan, M.Y.A., 2017. Crack Growth Behavior of Pipes Made from Polyvinyl Chloride Pipe Material. J. Press. Vessel Technol. Trans. ASME 139, 1–17. https://doi.org/10.1115/1.4033124 R6: assessment of the integrity of structures containing defects, Rev. 4, 2015. EDF Energy, Gloucester, UK. González, P., Cicero, S., Arroyo, B., Álvarez, J.A., 2019. A Theory of Critical Distances based methodology for the analysis of environmentally assisted cracking in steels. Eng. Fract. Mech. 214, 134–148. Kocak, M., Webster, S., Janosch, J.J., Ainsworth, R.A., Koers, R., 2008. FITNET Fitness-for-Service (FFS) Procedure, Revision MK8. GKSS, Hamburg, Germany. Madrazo, V., Cicero, S., Carrascal, I.A., 2012. On the Point Method and the Line Method notch effect predictions in Al7075-T651. Eng. Fract. Mech. 79, 363– 379. https://doi.org/10.1016/j.engfracmech.2011.11.017 Neuber, H., 1936. Theorie der technischen Formzahl. Forsch. auf dem Gebiet des Ingenieurwesens A 7, 271–274. Peterson, R.E., 1959. Notch Sensitivity, Metal Fatigue, G. Sines, J. Lwaisman. New York McGrawrHill. Sánchez, M., Cicero, S., Arroyo, B., Álvarez, J.A., 2020. Coupling finite element analysis and the theory of critical distances to estimate critical loads in al6060 t66 tubular beams containing notches. Metals (Basel). 10, 1–11. https://doi.org/10.3390/met10101395 Taylor, D., 2007. The theory of critical distances: a new perspective in fracture mechanics. Elsevier, London. UNE-EN 1401, 2009. Plastics piping systems for water supply and for buried and above-ground drainage and sewerage under pressure - Unplasticized poly(vinyl chloride) (PVC-U). European Committee for Standardization, Brussels.

Made with FlippingBook Ebook Creator