PSI - Issue 32
A. Kostina et al. / Procedia Structural Integrity 32 (2021) 101–108 A. Kostina/ Structural Integrity Procedia 00 (2021) 000 – 000
108
8
[8] Kostina, A., Zelnin, M., Plekhov, O., Panteleev, I., Levin, L., Semin, M., 2020. An Applicability of Vyalov’s equations to ice wall strength estimation. Frattura ed Integrita Strutturale 14, 394-405. https://doi.org/10.3221/IGF-ESIS.53.30. [9] Li, D., Zhang, C., Ding, G., Zhang, H., Chen, J., Cui, H., Pei, W., Wang, S., An, L., Yuan, C., 2020. Fractional derivative-based creep constitutive model of deep artificial frozen soil. Cold Regions Science and Technology 170, 102942. https://doi.org/10.1016/j.coldregions.2019.102942. [10] Li, D. W., Fan, J. H., Wang, R. H., 2011. Research on visco-elastic-plastic creep model of artificially frozen soil under high confining pressures. Cold Regions Science and Technology 65, 219-225. https://doi.org/10.1016/j.coldregions.2010.08.006. [11] Wen, Z., Sheng, Y., Jin, H., Li, S., Li, G., Niu, Y., 2010. Thermal elasto-plastic computation model for a buried oil pipeline in frozen ground. Cold Regions Science and Technology 64, 248-255. https://doi.org/10.1016/j.coldregions.2010.01.009. [12] Zheng, L., Gao, Y. Zhou, Y. Liu, T. Tian, S. 2021. A practical method for predicting ground surface deformation induced by the artificial ground freezing method. Computers and Geotechnics 130, 103925. https://doi.org/10.1016/j.compgeo.2020.103925. [13] Li, Y., Cheng, Y., Yan, C., Xue, M., Niu, C., Gao, Y., Wang, T., 2020. Simulating the effect of frozen soil thaw on wellhead stability during oil and gas drilling operations in arctic waters. Journal of Cold Regions Engineering 34, 04020026. https://doi.org/10.1061/(ASCE)CR.1943 5495.0000233. [14] Michalowski, R. L., Zhu, M., 2006. Frost heave modelling using porosity rate function. International Journal for Numerical and Analytical Methods in Geomechanics 30, 703-722. https://doi.org/10.1002/nag.497. [15] Wang, Y., Liu, Y., Cui, Y., Guo, W., Lv, J., 2018. Numerical simulation of soil freezing and associated pipe deformation in ground heat exchangers. Geothermics 74, 112-120. https://doi.org/10.1016/j.geothermics.2018.02.010. [16] Luo, B., Ishikawa, T., Tokoro, T., Lai, H., 2017. Coupled thermo-hydro-mechanical analysis of freeze – thaw behavior of pavement structure over a box culvert. Transportation Research Record 2656, 12-22. https://doi.org/10.3141/2656-02. [17] Tian, Y., Yang, Z. J., Tai, B., Li, Y., Shen, Y., 2019. Damage and mitigation of railway embankment drainage trench in warm permafrost: a case study. Engineering Geology 261, 105276. https://doi.org/10.1016/j.enggeo.2019.105276. [18] Arzanfudi, M. M., Al-Khoury, R., 2018. Freezing-thawing of porous media: an extended finite element approach for soil freezing and thawing, Advances in Water Resources 119, 210-226. https://doi.org/10.1016/j.advwatres.2018.07.013. [19] Li, G., Li, N., Bai, Y., Liu, N., He, M., Yang, M., 2020. A novel simple practical thermal-hydraulic-mechanical (THM) coupling model with water-ice phase change. Computers and Geotechnics 118, 103357. https://doi.org/10.1016/j.compgeo.2019.103357. [20] Zhelnin, M., Kostina, A., Plekhov, O., Levin, L., 2021. Numerical simulation of coupled thermo-hydro-mechanical processes in freezing soils. WCCM-ECCOMAS2020 1600. https://doi.org/10.23967/wccm-eccomas.2020.239.
Made with FlippingBook Online newsletter creator