PSI - Issue 32

Kseniia A. Mokhireva et al. / Procedia Structural Integrity 32 (2021) 137–143 Author name / Structural Integrity Procedia 00 (2019) 000 – 000

143

7

introduction of multi-walled carbon nanotubes into the structure of the high carbon black-filled vulcanizate causes the filler to orient along the loading axis, which leads to material softening along another axis. Acknowledgements The results of the work were obtained within the RFBR grant (project No. 19-08-00725) and within the state assignment of by Ministry of Science and Higher Education of the Russ ian Federation (theme No. АААА - А20 120022590044-7). References Diani, J., Brieu, M., Vacherand, J.-M., Rezgui, A., 2004. Directional model isotropic and anisotropic hyperelastic rubber-like materials. Mechanics of Materials 36, 313 – 321. Diani, J., Brieu, M., Gilormini, P., 2006. Observation and modeling of the anisotropic visco-hyperelastic behavior of a rubberlike material. International Journal of Solids and Structures 43, 3044 – 3046. Itskov, M., Aksel, N., 2004. A class of orthotropic and transversely isotropic hyperelastic constitutive models based on a polyconvexstrain energy function. International Journal of Solids and Structures 41, 3833 – 3848. Marckmann, G., Chagnon, G., Le Saux, M., Charrier, P., 2016. Experimental investigation and theoretical modelling of induced anisotropy during stress-softening of rubber. International Journal of Solids and Structures 97-98, 554 – 565. Dargazany, R., Khiêm , V. N., Navrath, U., Itskov, M., 2012. Network evolution model of anisotropic stress softening in filled rubber-like materials: parameter identification and finite element implementation. Journal of Mechanics of Materials and Structures 7, 861 – 885. Mai, T.-T., Morishita, Y., Urayama, K., 2017. Induced anisotropy by Mullins effect in filled elastomers subjected to stretching with various geometries. Polymer 126, 29 – 39. Machado, G., Chagnon, G., Favier, D., 2012. Induced anisotropy by the Mullins effect in filled silicone rubber. Mechanics of Materials 50, 70 – 80. Mokhireva, K. A., Svistkov, A. L., Solod’ko , V. N., Komar, L. A., Stöckelhuber , K. W., 2017. Experimental analysis of the effect of carbon nanoparticles with different geometry on the appearance of anisotropy of mechanical properties in elastomeric composites. Polymer Testing 59, 46 – 54. Shadrin, V. V., 2005. Recovery of the mechanical properties of rubber under thermal treatment. Polymer Science, Series B 47, 220 – 222. Dolmatov, V. Yu., 2009. Composition materials based on elastomer and polymer matrices filled with nanodiamonds of detonation synthesis. Nanotechnologies in Russia 4, 556 – 575. Vozniakovskii, A. A., Voznyakovskii, A. P., Kidalov, S. V., Osipov, V. Yu., 2020. Structure and paramagnetic properties of graphene nanoplatelets prepared from biopolymers using self-propagating high-temperature synthesis. Journal of Structural Chemistry 61, 826 – 834. Neverovskaya, A. Yu., Otvalko, Ja. A., Voznyakovskii, A. A., Ryutkyanen, E. A., Voznyakovskii, A. P., 2019. Effect of 1D and 2D nanocarbons on the structure and properties of low-molecular butadiene-nitril elastomers. Bulletin of the Saint Petersburg State Institute of Technology (Techical University) 48(74), 3 – 8. Stepina, N. P., Galkov, M. S., Predtechenskiy, M. R., Bezrodny, A. E., Kirienko, V. V., Dvurechenskii, A. V., 2019. Preparation and transport properties of oriented buckypapers with single walled carbon nanotubes. Modern Electronic Materials 5(1), 21 – 26. Bocharov, G. S., Egin, M. S.,. Eletskii, A. V., Kuznetsov, V. L., 2018. Filling carbon nanotubes with argon. Nanosystems: Physics , Chemistry , Mathematics 9, 85 – 88.

Made with FlippingBook Online newsletter creator