PSI - Issue 31

Sanjin Braut et al. / Procedia Structural Integrity 31 (2021) 33–37 Sanjin Braut et al. / Structural Integrity Procedia 00 (2019) 000–000

37 5

Acknowledgements This work has been supported by the University of Rijeka under the project number uniri-tehnic-18-225. References Babić, M., Verić, O., Božić, Ž., Sušić, A., 2018. Reverse Engineering based Integrity Assessment of a Total Hip Prosthesis. Procedia Structural Integrity 13, 438–443. Babić, M., Verić, O., Božić, Ž., Sušić, A., 2019. Fracture Analysis of a Total Hip Prosthesis based on Reverse Engineering. Engineering Fracture Mechanics 215, 261–271 Babić, M., Verić, O., Božić, Ž., Sušić, A. 2020. Finite element modelling and fatigue life assessment of a cemented total hip prosthesis based on 3D scanning. Engineering Failure Analysis 113, 104536. Baragetti, S., Borzini, E., Božić, Ž., Arcieri, E.V., 2019. On the fatigue strength of uncoated and DLC coated 7075-T6 aluminum alloy. Engineering Failure Analysis 102, 219-225. Baragetti, S., Božić, Ž., Arcieri, E.V., 2020. Stress and fracture surface analysis of uncoated and coated 7075-T6 specimens under the rotating bending fatigue loading. Engineering Failure Analysis 112, 104512. Basan, R., 2011. MATDAT Material Properties Database, http://www.matdat.com/ Božić, Ž., Bitunjac, V., Semenski, D., 2010. Interaction Modelling of Multiple Fatigue Cracks in Stiffened Panels. Transactions of FAMENA 34(4), 11–19. Božić, Ž., Wolf, H., Semenski, D., 2010. Fatigue Growth of Multiple Cracks in Plates under Cyclic Tension. Transactions of FAMENA 34(1), 1– 12. Božić, Ž, Mlikota, M., Schmauder, S., 2011. Application of the ΔK, ΔJ and ΔCTOD Parameters in Fatigue Crack Growth Modelling. Technical Gazette 18(3), 459–466. Božić, Ž., Schmauder, S., Mlikota, M., 2011. Fatigue Growth Models for Multiple Long Cracks in Plates under Cyclic Tension based on ΔKI, ΔJ– Integral and ΔCTOD Parameter. Key Engineering Materials 488–489, 525–528. Božić, Ž., Schmauder, S., Mlikota, M., Hummel, M., 2014. Multiscale Fatigue Crack Growth Modelling for Welded Stiffened Panels. Fatigue and Fracture of Engineering Materials and Structures 37(9), 1043–1054. Božić Ž., Schmauder S., Wolf, H., 2018. The effect of residual stresses on fatigue crack propagation in welded stiffened panels. Engineering Failure Analysis 84, 346–357. Butković, M., Tevčić, M., Orčić, B., 2016. Importance of statistics in evaluating measurement for compressor blades cyclic strength, 16th International Conference on New Trends in Fatigue and Fracture, May, 24-27. 2016., Dubrovnik, Croatia Cano, S., Rodríguez, J.A., Rodríguez, J.M., García, J.C., Sierra, F.Z., Casolco, S.R., Herrera, M., 2019. Detection of damage in steam turbine blades caused by low cycle and strain cycling fatigue. Engineering Failure Analysis 97, 579–588. Cazin, D., Braut, S., Žigulić, R., 2009. Fatigue life analysis of the damaged steam turbine blade. Engineering Review 29-2, 33-43. Cazin, D., Braut, S., Božić, Ž., Žigulić R., 2020. Low cycle fatigue life prediction of the demining tiller tool. Engineering Failure Analysis 111, 104457. Collins, J.A., 1993. Failure of Materials in Mechanical Design, John Wiley & Sons, Inc. Lee, Y-L, Pan. J., Hathaway, R.B., Barkey, M.E., 2005. Fatigue testing and analysis: Theory and Practice . Butterworth-Heinemann / Elsevier, Burlington, USA. Locati, L., 1955. Le prove di fatica come ausilio alla progettazione ed alla produzione. La Metallurgia Italiana 47(9), pp. 301–308. Mlikota, M., Schmauder, S., Božić, Ž., Hummel, M., 2017. Modelling of Overload Effects on Fatigue Crack Initiation in Case of Carbon Steel. Fatigue and Fracture of Engineering Materials and Structures 40(8), 1182–1190. Mlikota, M., Schmauder, S., Božić, Ž., 2018. Calculation of the Wöhler (S-N) curve using a two-scale model. International Journal of Fatigue 114, 289-297. Obolenski, E.F.; Saharov, B.I.; Strelcov, N.P., Pročnost agregatov obrudovanija I elemetov sistem žizneobespečenija letalelnyh apparatov. Mašinostrcenie, Moskva, 1989. Pastorcic, D., Vukelic, G., Bozic, Z., 2019. Coil spring failure and fatigue analysis. Engineering Failure Analysis 99, 310–318. Recomendation OST 1 0030-79, 1979. for Gas Turbine Blades, in Russian Reid, M. 2020. Reliability – a Python library for reliability engineering (Version 0.5.1) [Computer software]. Zenodo. https://doi.org/10.5281/ZENODO.3938000 Solob, A., Grbović, A., Božić, Ž., Sedmak, S.A. 2020. XFEM based analysis of fatigue crack growth in damaged wing-fuselage attachment lug. Engineering Failure Analysis 112, 104516. Stephens, R.I., Fatemi, A., Stephens, R.R., Fuchs, H.O., 2000. Metal Fatigue in Engineering, John Wiley & Sons, New York. Vučković, K., Galić, I., Božić, Z., Glodež, S., 2018. Effect of friction in a single-tooth fatigue test. International Journal of Fatigue 114, 148-158. Vukelić, G., Pastorčić, D., Vizentin, G., Božić, Ž., 2020. Failure Investigation of a Crane Gear Damage. Engineering Failure Analysis 115, 104613. Wang, Y., Serra, R., Argoul, P., 2019. Adapted Locati method used for accelerated fatigue test under random vibrations. Structural Integrity Procedia 19, 674-681. Zhang, O., Poirier, M, Barr, J., 2003. Modified Locati Method and Fatigue Testing. SAE Technical Paper 2003-01-0919, Detroit, March 3-6, 2003.

Made with FlippingBook Annual report maker