PSI - Issue 28
B.W. Williams et al. / Procedia Structural Integrity 28 (2020) 1024–1038 Author name / Structural Integrity Procedia 00 (2019) 000–000
1029
6
Table 1: Quasi-State Hardening Law Constants for TC128B at 0.001 s -1 Temperature ��� �� ��� °C MPa --- MPa
A
n
MPa
---
24
400.0 415.0 430.0 450.0 475.0 505.0
0.020 0.021 0.022 0.023 0.024 0.025
404.6 425.0 440.0 465.0 485.0 515.0
112.87
0.180 0.188 0.196 0.204 0.212 0.220
0
97.11 82.49 65.18 57.23 49.15
-20 -40 -60 -80
Table 2: Dynamic Hardening Law Constants for TC128B at 100 s -1 Temperature ��� �� ��� °C MPa --- MPa
A
n
MPa 96.70
---
24
530.0 540.0 560.0 590.0 620.0 655.0
0.020 0.021 0.022 0.023 0.024 0.025
540.0 550.0 570.0 604.4 625.0 660.0
0.180 0.188 0.196 0.204 0.212 0.220
0
101.68
-20 -40 -60 -80
85.75 66.35 61.13 54.33
3.2. Ductile Fracture Model for TC128B: Room Temperature and Quasi-Static The Modified Mohr-Coulomb (MMC) ductile failure model detailed by Paredes et al. (2018) was used to model the room temperature and quasi-static fracture response of TC128B. This model is referred to in the current work as the MMC-PW fracture model. In this model, the strain to initiate fracture, � , depends on stress triaxiliaty, , and Lode angle, � . The effective strain at damage initiation is given by where � , � , � , , and n are material constants specific to a single temperature and strain-rate. Upon damage initiation at D 0 =1, damage evolution and element weakening evolve according to � � ⎪⎨ ⎩ ⎪⎧ � � � � � � √3 √3 �1 � � � ���� � � 6 � � 1�� � � 1 � � � 3 ��� � � 6 � � � � � 1 3 ��� � � 6 ��� ⎭⎪⎬ ⎪⎫ � ��� (2)
���������������������������������� � � � � � � � � � and � � � � � � �� � �� � � �
(3).
Made with FlippingBook Ebook Creator