PSI - Issue 28
J. Weiland et al. / Procedia Structural Integrity 28 (2020) 1249–1257 Weiland et al. / Structural Integrity Procedia 00 (2019) 000–000
1257
9
[4] Graner Solana, A.; Crocombe, A. D.; Ashcroft, I. A.: Fatigue life and backface strain predictions in adhesively bonded joints. In: International Journal of Adhe-sion and Adhesives 30 (2010) [5] Zäh, M.F., Schlickenrieder, K. & Mosandl, T: Zerstörungsfreie Prüfverfahren und ihre Eignung für die Klebtechnik, Adhäsion – Kleben und Dichten, Springer 2003 [6] P. C. Wölcken und M. Papadopoulos, Hg., Smart Intelligent Aircraft Structures (SARISTU): Proceedings of the Final Project Conference, 1. Aufl. Cham: Springer International Publishing; Imprint; Springer, 2016. [7] Sigurdardottir, D. H.: Strain-based monitoring methods for beam-like struc-tures. Princeton University, Department of civil and environmental engineering. PhD thesis (2015) [8] Ciang, C.C.; Lee, J.-R.; Bang, H.-J.:Structural health monitoring for a wind turbine system: a review of damage detection methods, Measurement Science and Technology 19 (2008), H. 12. [9] Soman, R.; Malinkowski, P.; Ostachowicz, W.: Bi-axial neutral axis tracking for damage detection in wind-turbine towers. In: Wind Energy (2015) [10] Takahashi, K.; Soejima, H.; Nakajima, M.; Okabe, Y.; Takeda, N.; Kojima, H.: Bond Line Monitoring Technology for Aircraft CFRP Structure Using Lamb Wave. In: Structural Health Monitoring (2015) [11] J. Weiland, M.Z. Sadeghi, J.V. Thomalla, A. Schiebahn, K.U. Schroeder, U. Reisgen, Analysis of back-face strain measurement for adhesively bonded single lap joints using strain gauge, Digital Image Correlation and finite ele-ment method, International Journal of Adhesion and Adhesives, Volume 97, 2020. [12] M.Z. Sadeghi, J. Weiland, A. Preisler, J. Zimmermann, A. Schiebahn, U. Reisgen, K.U. Schroeder, Damage detec-tion in adhesively bonded single lap joints by using backface strain: Proposing a new position for backface strain gauges, International Journal of Adhesion and Adhesives, Volume 97, 2020. [13] Zockoll, A.; Plagemann, P.: Den Zustand von Klebungen kontinuierlich im Blick. In: Adhäsion Kleben und Dichten 58 (2014) [14] Crossley, S. D.; Mariolo-Riga, Z.; Tsamasphyros, G.; Kanderakis, G.; Furnarakis, N.; Ikiades, A.; Konstantaki, M.: Smart patches: self-monitoring composite patches for the repair of aircraft. In: SPIE 5272, Industrial and Highway Sensors Technology (2004) [15] Froevel, M.; Sanmillian, J.; Maroto, J.; Pintado, J. M.; Kressel, I.; Balter, J.; Gorbatov, N.; Tur, M.: Repair Patch Monitoring with Embedded Optical Sensors by the Residual Strain Release. In: 7th European Workshop on Structural Health Monitoring (2014) [16] Hildebrand, J., Kuhne, M.: Vorrichtung und Verfahren zur Überwachung des Zustandes einer Klebeverbindung. Patentschrift DE 102011084579B4 (2013) [17] Hildebrand, J., Könke, C.: Monitoring von Klebverbindungen mittels faseroptischen Messsystem – MOFAS, Schlussbericht IGF-Vorhaben 17777 BR des DVS, Weimar 2015 [18] S. Sulejmani, C. Sonnenfeld, T. Geernaert, G. Luyckx, P. Mergo, W. Urbanczyk, K. Chah, H. Thienpont, F. Ber hmans, Disbond monitoring in adhesive joints using shear stress optical fiber sensors, Smart Mater. Struct. 23 075006 2014 [19] R. Engelbrecht: Fiber Optic Strain and Temperature Sensing: Overview of Principles. 18th Int. Conf. on Sensors and Measurement Technology (SENSOR 2017), AMA Verband für Sensorik und Messtechnik e.V., Artikel Nr. B6.1, 2017. [20] A. Djordjevich: Alternative to strain measurement, Optical Engineering, 42, 7, 1888, 2003 [21] T. Becker, R. Engelbrecht, B. Schmauss: Novel Model for the Angle and Skewness Dependent Transmission Behavior of Step-Index Polymer Optical Fiber, Fibers 2018, 6, 65, 2018 [22] K S C Kuang et al 2002 Meas. Sci. Technol. 13 1523 - https://doi.org/10.1088/0957-0233/13/10/303….. [23] Ziemann, O., Krauser, J., Zamzow, P. E., Daum, W.: POF-Handbuch Optische Kurzstrecken-Übertragungssysteme, Springer Verlag, Berlin Heidelberg 2007
Made with FlippingBook Ebook Creator