PSI - Issue 27
Eko Surojo et al. / Procedia Structural Integrity 27 (2020) 14–21 Surojo et al. / Structural Integrity Procedia 00 (2019) 000 – 000
21
8
Liu, H.J., Zhang, H.J., Liu, H.J., Yu, L., 2010. Mechanical properties of underwater friction stir welded 2219 aluminum alloy. Trans Nonferrous Met. Soc China 20, 1387 – 1391. Mahtoa, R.P., Guptab, C., Kinjawadekarb, M., Meenaa, A, Pal, S.K., 2019. Weldability of AA6061-T6 and AISI 304 by underwater friction stir welding. Journal of Materials Processing Technology 38, 370 – 386. Majumdar, J.D., 2006. Technical Note Underwater Welding – present status and future scope. Journal of Naval Architecture and Marine Engineering 3, 39-48. Matien, Y.A., Triyono, Muhayat, N., Saputro, Y.C.N., 2019. Effect of Water Depth on the Microstructure and Tensile Strength of the 5 G Position Underwater Wet Welded Low Carbon Steel. AIP Conference Proceedings 2097, 030044. Muhayat, N., Matien, Y.A., Sukamto, H., Saputro, Y.C.N., Triyono, 2020. Fatigue life of underwater wet welded low carbon steel SS400. Heliyon 6, e03366. Muttaqie, T., Thang, D.Q., Prabowo, A.R., Cho, S.R., Sohn, J.M., 2019. Numerical studies of the failure modes of ring-stiffened cylinders under hydrostatic pressure. Structural Engineering and Mechanics 70, 431-443. Nixon, J.H., 2000. Underwater welding technology. Underw. Repair Technol. 544, 25 – 37. Orr, L., 2006. Underwater welding. Shipping World and Shipbuilder 207, 38 – 39. Pedati, S. R., Paramaguru, D., 2017. Microhardness and microstructural studies on underwater friction stir welding of 5052 aluminum alloy. Proceedings of the ASME 2017 IMECE. Rodriguez-Sanchez, J.E., Perez-Guerrero, F., Liu, S., Rodriguez-Castellanos, A., Albiter-Hernandez, A., 2014. Underwater repair of fatigue cracks by gas tungsten arc welding process. Fatigue Fract. Eng. Mater. Struct. 37, 637 – 644. Shanavas, S., Dhas, J.E.R., Murugan, N., 2018. Weldability of marine grade AA 5052 aluminum alloy by underwater friction stir welding. The international Journal of Advanced Manufacturing Technology. Swierczynska, A., Fydrych, D. and Rogalski, G., 2017. Diffusible hydrogen management in underwater wet self-shielded flux cored arc welding. International Journal of Hydrogen Energy 42, 24532 – 24540. Tan, Y.B., Wang, X.M., Ma, M., Zhang, J.X., Liu, W.C., Fu, R.D., Xiang, S., 2017. A study on microstructure and mechanical properties of AA 3003 aluminum alloy joints by underwater friction stir welding. Material Characterization 127, 41-52. Taylor, P., Jerzy, L., 2011. Development of under-water welding techniques, 37 – 41. Wsang, Q., Zhao, Z., Zhao, Y., Yan, K., Liu, C., Zhang, H., 2016. The strengthening mechanism of spray forming Al-Zn-Mg-Cu alloy by underwater FSW. Material Design, 30512. Wang, Y., Chen, Y., Zhang, W., Liu, D., Huang H., 2009. Study on underwater wet arc welding training with haptic device. IEEE International Conference on Virtual Environments, Human-Computer Interfaces, and Measurements Systems, Proceedings, 191 – 195. Xue, S., Wang, B., Zhang, L., Long, W., 2019. Development of Green Welding Technology in China During the Past. Materials Reports 33, 2813 2830. Yang, Q., Han, Y., Jia, C., Wu, J., Dong, S., Wu, C., 2019. Impeding effect of bubbles on metal transfer in underwater wet FCAW. J. Manuf. Process 45, 682 – 689. Yohanes, P., Nurul, M., Triyono., 2018. Effect of water depth on the microstructure and mechanical properties of SS400 steel in underwater welding. Key Engineering Materials 772 KEM, 128 – 132. Zhang, H. J., Liu, H. J., Yu, L., 2012. Effect of water cooling on the performances of friction stir welding heat-affected zone. Journal of Materials Engineering and Performance 21, 1182 – 1187. Zhang, Y., Jia, C., Zhao, B., Hu, J., Wu, C., 2016. Heat input and metal transfer influences on the weld geometry and microstructure during underwater wet FCAW. Journal of Materials Processing Technology 238, 373 – 382.
Made with FlippingBook Digital Publishing Software