PSI - Issue 26
Merazi Mohamed et al. / Procedia Structural Integrity 26 (2020) 129–138 Merazi et al. / Structural Integrity Procedia 00 (2020) 000 – 000
133
5
For elastic and isotropic FGMs, the constitutive relations can be written as:
55 0 0 0 0 Q 0 0 0 Q 0 0 0 Q 0 0 0 0 0 Q Q Q Q 0 0 0 44 22 12 12 11
y x
y x
(10)
=
xy xz yz
xy xz yz
66
) + 2 1 E(z ) ns
( 1 E(z ) − ) 2 ns
( ) ns 11 ns 12 Q (z ) Q z = ,
( )
( ) ( =
,
(11)
= Q (z ) Q z Q z ns 55 ns 44 = ns 66
ns Q (z ) 11
=
2.4 Equilibrium equations
The governing equations of equilibrium can be derived by using the principle of virtual displacements. The principle of virtual work in the present case yields: − − − + − = + + + 0, / 2 / 2 d dz q wd h d h d xz xz yz yz xy xy y y x x (12)
Where is the top surface and q is the applied transverse load.
s y b y M M M M M M N N N , , , , , , s x b x y x
1
xy
h d − / 2
(
)
(13)
s xy b xy
f z z
dz
x y xy , ,
=
ns
( ) ns
h d / 2
− −
h d − / 2
(
)
(
) ( ) ns ns g z dz
(14)
s xz S S ,
s yz
,
=
yz
xz
h d / 2
− −
The governing equations of equilibrium can be derived from Eq. (12) by integrating the displacement gradients by parts and setting the coefficients zero 0 u , 0 v , b w , and s w separately. Thus one can obtain the equilibrium equations associated with the present new hyperbolic shear deformation theory:
N
y
: 0 x u N
0
=
+
x
y
(15)
N
N
xy
y
: 0 v
0
+
=
x
y
b xy
b y
2
2
x y M
M
b
2
: dx w M b 2
+ = q
2
0
+
+
x
2 2
2
dy
s yz
s xy
s y
2
2
x y M
M
S
s xz
s
2
S
: dx w M s 2
+ = q
2
0
+
+
+
+
x
2 2
2
x
y
dy
Made with FlippingBook - Share PDF online