PSI - Issue 26
Myroslava Hredil et al. / Procedia Structural Integrity 26 (2020) 409–416 Hredil et al. / Structural Integrity Procedia 00 (2020) 000 – 000
416
8
higher cleavage ridges separating the adjacent fatigue festoons, which create favorable conditions for crack closure effect. Soil solution under fatigue testing promotes occurrence of intergranular fracture elements with secondary microcracking, more noticeable in operated steels. Simulation of working conditions of gas pipelines proved that hydrogen formed at the inner pipe surface can penetrate pipe wall and facilitate the crack growth at the outer pipe surface. Both in-laboratory and operational steel degradation methods lead to cohesion weakening between adjacent grains, manifested by appearance of intergranular fracture elements, and secondary microcracking.
Acknowledgements
This research has been supported by the NATO in the Science for Peace and Security Programme under the Project G5055.
References
Gabetta, G., Nykyforchyn, H., Lunarska, E., Zonta, P. P., Tsyrulnyk, O. T., Nikiforov, K., Hredil, M. I., Petryna, D. Yu., Vuherer T., 2008. In-service degradation of gas trunk pipeline X52 steel. Materials Science 44 (1), 88 – 99. GOST 7268-82. Steel. Method for determination of ability to mechanical ageing by impact bend testing. Gredil, M.I., 2008. Operating degradation of gas-main pipeline steels. Metallofizika i Noveishie Tekhnologii 30, 397 – 406. Hredil, M., Tsyrulnyk, O., 2010. Inner corrosion as a factor of in-bulk steel degradation of transit gas pipelines, 18th European Conference on Fracture (ECF-18), Dresden, Germany, manuskript #483. Hredil, M.I., 2011. Role of disseminated damages in operational degradation of steels of the main gas conduits. Metallofizika i Noveishie Tekhnologii 33 (Spec. Iss.), 419 – 426. Krechkovs’ka , H. V., Tsyrul’nyk, O. T., Student, O. Z., 2019. In-service degradation of mechanical characteristics of pipe steels in gas mains. Strength of Materials 51(3), 406 – 417. Lesiuk, G., Smolnicki, M., Rozumek, D., Krechkovska, H., Student, O., Correia, J., Mech, R., De Jesus, A., 2020. Study of the fatigue crack growth in long-term operated mild steel under mixed-mode (I + II, I + III) loading conditions. Materials 13, 160 – 170. Nykyforchyn, H., Lunarska, E., Tsyrulnyk, O.T., Nikiforov, K., Genarro, M.E., Gabetta, G., 2010. Environmentally assisted “in - bulk” steel degradation of long term service gas trunkline. Engineering Failure Analysis 17, 624 – 632. Nykyforchyn, H., Krechkovska, H., Student, O., Zvirko, O., 2019. Feature of stress corrosion cracking of degraded gas pipeline steels. Procedia Structural Integrity 16, 153 – 160. Nykyforchyn 1 , H., Tsyrulnyk, O, Zvirko, O., 2019. Laboratory method for simulating hydrogen assisted degradation of gas pipeline steels. Procedia Structural Integrity 17, 568 – 575. Ohaeri, E., Eduok, U., Szpunar, J., 2018. Hydrogen related degradation in pipeline steel: A review. International Journal of Hydrogen Energy 43(31), 14584 – 14617. Ritchie, R. O., Suresh, S., 1982. Some considerations on fatigue crack closure at near-threshold stress intensities due to fracture surface morphology. Metallurgical Transactions A 13(5), 937 – 940. Student 1 , O.Z., Cichosz, P., Szimkowski, J., 1999. Correlation between the fracture roughness and fatigue threshold of high-temperature degraded steel. Materials Science 35(6), 796 – 801. Student 2 , O.Z., Dudziński, W., Nykyforchyn, H.M., Kamińska, A., 1999. Effect of high-temperature degradation of heat-resistant steel on the mechanical and fractographic characteristics of fatigue crack growth. Materials Science 35(4), 499 – 508. Suresh, S., Zamiski, G. F., Ritchie, R. O., 1981. Oxide-induced crack closure: an explanation for near threshold corrosion fatigue crack growth behavior. Metallurgical and Materials Transactions A, 12(8), 1435 – 1443. Zvirko, O.I., Savula, S.F., Tsependa, V.M., Gabetta, G., Nykyforchyn, H.M., 2016. Stress corrosion cracking of gas pipeline steels of different strength. Procedia Structural Integrity 2, 509 – 516.
Made with FlippingBook - Share PDF online