PSI - Issue 25

J.M. Parente et al. / Procedia Structural Integrity 25 (2020) 282–293 J.M. Parente/ Structural Integrity Procedia 00 (2019) 000 – 000

292

11

Graphene Oxide/Epoxy Composites. Macromolecules 45(1): 238 – 45. Bourchak, Mostefa, Abdullah Algarni, Adnan Khan, and Usama Khashaba. 2018. Effect of SWCNTs and Graphene on the Fatigue Behavior of Antisymmetric GFRP Laminate. Composites Science and Technology 167: 164 – 73. Domun, N, H Hadavinia, T Zhang, T Sainsbury, G H Liaghat, and S Vahid. 2015. Improving the Fracture Toughness and the Strength of Epoxy Using Nanomaterials – a Review of the Current Status. Nanoscale 7(23): 10294 – 329. Dong, Bin, Chang Liu, Liqun Zhang, and Youping Wu. 2015. Preparation, Fracture, and Fatigue of Exfoliated Graphene Oxide/Natural Rubber Composites. RSC Adv. 5(22): 17140 – 48. Dong, Bin, Liqun Zhang, and Youping Wu. 2017. Influences of Different Dimensional Carbon-Based Nanofillers on Fracture and Fatigue Resistance of Natural Rubber Composites. Polymer Testing 63: 281 – 88. Giannelis, Emmanuel P. 1996. Polymer Layered Silicate Nanocomposites. Advanced Materials 8(1): 29 – 35. Hwang, Byungil, Wonsik Kim, Jaemin Kim, Subin Lee, Seoyoen Lim, Sangmin Kim, Sang Ho Oh, Seunghwa Ryu, and Seung Min Han. 2017. Role of Graphene in Reducing Fatigue Damage in Cu/Gr Nanolayered Composite. Nano Letters 17(8): 4740 – 45. Kim, Kyu Hun, Youngseok Oh, and M. F. Islam. 2012. Graphene Coating Makes Carbon Nanotube Aerogels Superelastic and Resistant to Fatigue. Nature Nanotechnology 7(9): 562 – 66. Knoll, J.B., B.T. Riecken, N. Kosmann, S. Chandrasekaran, K. Schulte, and B. Fiedler. 2014. The Effect of Carbon Nanoparticles on the Fatigue Performance of Carbon Fibre Reinforced Epoxy. Composites Part A: Applied Science and Manufacturing 67 (December): 233 – 40. Komarneni, Sridhar. 1992. Feature Article. Nanocomposites. Journal of Materials Chemistry 2(12): 1219. Kuilla, Tapas, Sambhu Bhadra, Dahu Yao, Nam Hoon Kim, Saswata Bose, and Joong Hee Lee. 2010. Recent Advances in Graphene Based Polymer Composites. Progress in Polymer Science 35(11): 1350 – 75. Kumar, H. G. Prashantha, and M. Anthony Xavior. 2016. Fatigue and Wear Behavior of Al6061 – Graphene Composites Synthesized by Powder Metallurgy. Transactions of the Indian Institute of Metals 69(2): 415 – 19. Ladani, Raj B., Mukesh Bhasin, Shuying Wu, Anil R. Ravindran, Kamran Ghorbani, Jin Zhang, Anthony J. Kinloch, Adrian P. Mouritz, and Chun H. Wang. 2018. Fracture and Fatigue Behaviour of Epoxy Nanocomposites Containing 1-D and 2-D Nanoscale Carbon Fillers. Engineering Fracture Mechanics 203: 102 – 14. Leopold, Christian, Gordon Just, Ilja Koch, Andreas Schetle, Julia B. Kosmann, Maik Gude, and Bodo Fiedler. 2019. Damage Mechanisms of Tailored Few-Layer Graphene Modified CFRP Cross-Ply Laminates. Composites Part A: Applied Science and Manufacturing 117: 332 – 44. Li, Hengyi, Lei Yang, Gengsheng Weng, Wang Xing, Jinrong Wu, and Guangsu Huang. 2015. Toughening Rubbers with a Hybrid Filler Network of Graphene and Carbon Nanotubes. Journal of Materials Chemistry A 3(44): 22385 – 92. Li, Yuanqing, Rehan Umer, Abdel Isakovic, Yarjan Abdul Samad, Lianxi Zheng, and Kin Liao. 2013. Synergistic Toughening of Epoxy with Carbon Nanotubes and Graphene Oxide for Improved Long-Term Performance. RSC Advances 3(23): 8849. Lin, Dong, C. Richard Liu, and Gary J. Cheng. 2014. Single-Layer Graphene Oxide Reinforced Metal Matrix Composites by Laser Sintering: Microstructure and Mechanical Property Enhancement. Acta Materialia 80: 183 – 93. Ling, Guoping, and Junhui He. 2004. The Influence of Nano-Al2O3 Additive on the Adhesion between Enamel and Steel Substrate. Materials Science and Engineering: A 379(1 – 2): 432 – 36. Mészáros, László, and József Szakács. 2016. Low-Cycle Fatigue Properties of Basalt Fiber and Graphene Reinforced Polyamide 6 Hybrid Composites. Journal of Reinforced Plastics and Composites 35(22): 1671 – 81. Metaxa, Z S, P Poulin, Z Paragkamian, S K Kourkoulis, and N D Alexopoulos. 2017. Effect of Graphene Nanoplatelet Thickness and Concentration on the Tensile Properties of Epoxy Resin. In 21st International Conference on Composite Materials . Paradee, Gary, Tom Martin, and Aris Christou. 2015. Fatigue Properties of ITO and Graphene on Flexible Substrates. IEEE Transactions on Device and Materials Reliability 15(3): 423 – 28. Parente, João M., Marco P. Silva, Paulo Santos, and Paulo N.B. Reis. 2019. Viscoelastic Behaviour of Nanocomposites Enhanced by Graphene: An Overview. Material Design & Processing Communications 1(6): 1 – 10. Rafiee, Mohammad A., Javad Rafiee, Zhou Wang, Huaihe Song, Zhong-Zhen Yu, and Nikhil Koratkar. 2009. Enhanced Mechanical Properties of Nanocomposites at Low Graphene Content. ACS Nano 3(12): 3884 – 90. Rafiee, Mohammed A., Javad Rafiee, Iti Srivastava, Zhou Wang, Huaihe Song, Zhong-Zhen Yu, and Nikhil Koratkar. 2010. Fracture and Fatigue in Graphene Nanocomposites. Small 6(2): 179 – 83. Saber-Samandari, Saeed, Akbar Afaghi Khatibi, and Domagoj Basic. 2007. An Experimental Study on Clay/Epoxy Nanocomposites Produced in a Centrifuge. Composites Part B: Engineering 38(1): 102 – 7. Shen, Ming-Yuan, Tung-Yu Chang, Tsung-Han Hsieh, Yi-Luen Li, Chin-Lung Chiang, Hsiharng Yang, and Ming-Chuen Yip. 2013. Mechanical Properties and Tensile Fatigue of Graphene Nanoplatelets Reinforced Polymer Nanocomposites. Journal of Nanomaterials 2013: 1 – 9.

Made with FlippingBook flipbook maker