PSI - Issue 21

Emre Kurt et al. / Procedia Structural Integrity 21 (2019) 21–30

30 10

Author name / StructuralIntegrity Procedia 00 (2019) 000 – 000

Hyde, T. H., Aksogan, O., 1994. A specimen for determining fracture properties under combined modes, I, II, and III crack tip conditions. The Journal of Strain Analysis for Engineering Design 29(1): 1-6. Irwin, G. R., 1957. Analysis of stresses and strains near the end of a crack transversing a plate. Journal of Applied Mechanics 24:361 – 70. Karpour, A., Zarrabi, K., 2010. Mixed-Mode I/II/III Fracture Grip Interface. Recent Patent on Mechanical Engineering 3: 131-139. Kikuchi, M., Wada, Y., Ohdama, C., 2012. Effect of KIII on fatigue crack growth behavior. Journal of Engineering Materials and Technology 134(4):041009. Paris, P. C., Gomez, M. P., Anderson, W. E., 1961. A rational analytic theory of fatigue. Trend Engineering 13:9 – 14. Paris, P. C., Erdogan, F., 1963. A critical analysis of crack propagation laws. Journal of Basic Engineering Trans ASME 528 – 34. Pook, L. P., 1985. Comments and fatigue crack growth under mixed modes I and III and pure mode III loading. In: Miller KJ, Brown MW, editors. Multiaxial fatigue, ASTM STP853. Philadelphia: Amer. Soc. Test. Mat, p. 249 – 63. Ren, X., Guan, X., 2017. Three dimensional crack propagation through mesh-based explicit representation for arbitrarily shaped cracks using the extended finite element method. Engineering Fracture Mechanics 177, 218-238. Richard, H. A., Kuna, M., 1990. Theoretical and experimental study of superimposed fracutre modes I, II and III. Engineering Fracture Mechanics 35: 949 – 60. Richard, H. A., Schollmann, M., Fulland, M., Sander, M., 2001. Experimental and numerical simulation of mixed mode crack growth. Proc. of 6th int. conf. of biaxial/multiaxial fatigue and fracture, p. 623 – 30. Richard, H. A., Schramm, B., Schirmeisen, N. H., 2014. Cracks on Mixed Mode loading – Theories, experiments, simulations. International Journal of Fatigue 62: 93-103. Richard, H. A., Eberlein, A., 2016. Material characteristics at 3D-mixed-mode-loadings. Procedia Structural Integrity 2: 1821-1828. Richard, H. A., Eberlein, A., Kullmer, G., 2017. Concepts and experimental results for stable and unstable crack growth under 3D-mixed-mode loadings. Engineering Fracture Mechanics 174: 10 – 20. Schirmeisen, N. H., Richard, H. A., 2009. Weiterentwicklung der AFM-probe zur experimentellen analyse räumlicher mixed-mode beanspruchung von Rissen. In: DVM-Bericht 241, Deutscher Verband für Materialforschung und – prüfung e.V., Berlin; p. 211 – 20. Schollmann, M., Kullmer, G., Fulland, M., Richard, H. A., 2001. A new criterion for 3d crack growth under mixed mode (I+II+III) loading. Proc. of 6th int. conf. of biaxial/multiaxial fatigue and fracture, p. 589 – 96. Shu, Y., Li, Y., Duan, M., Yang, F., 2017. An X-FEM approach for simulation of 3-D multiple fatigue cracks and application to double surface crack problems. International Journal of Mechanical Sciences 130, 331-349. Sih, G. C., 1974. Strain-energy-density factor applied to mixed mode crack problems. International Journal of Fracture Mechanics 10:305 – 21. Tanaka, K., 1974. Fatigue crack propagation from a crack inclined to the cyclic tensile axis. Engineering Fracture Mechanics 6:493 – 507. Yaren, M. F., Demir, O., Ayhan, A. O., İriç, S. , 2019. Three-dimensional mode-I/III fatigue crack propagation: Computational modeling and experiments. International Journal of Fatigue 121, 124-134. Zeinedini, A., 2018. A novel fixture for mixed mode I/II/III fracture testing of brittle materials. Fatigue & Fracture of Engineering Materials & Structures 1-16.

Made with FlippingBook - Online magazine maker