PSI - Issue 21

M. Hredil et al. / Procedia Structural Integrity 21 (2019) 166–172 M. Hredil, H. Krechkovska, O. Student, I. Kurnat / Structural Integrity Procedia 00 (2019) 000 – 000

172

7

References

Chan, S. L. I., Charles, J. A., 1986. Effect of carbon content on hydrogen occlusivity and embrittlement of ferrite – pearlite steels. Journal of Materials Science & Technology 2(9), 956 – 962. Gredil, M.I., 2008. Operating degradation of gas-main pipeline steels. Metallofizika i Noveishie Tekhnologii 30(Spec. Iss.), 397 – 406. Hredil, M., Tsyrulnyk, O., 2010. Inner corrosion as a factor of in-bulk steel degradation of transit gas pipelines, 18th European Conference on Fracture: Fracture of Materials and Structures from Micro to Macro Scale, paper #483. Hredil, M.I., 2011. Role of disseminated damages in operational degradation of steels of the main gas conduits. Metallofizika i Noveishie Tekhnologii 33(Spec. Iss.),, 419 – 426. Hredil, M.I., Student, O.Z., 2012. Effect of hydrogenating environment on crack growth and fractography peculiarities of the RPV steel, 19th European Conference on Fracture: Fracture Mechanics for Durability, Reliability and Safety, paper #159. Ichitani, K., Kanno, M., 2003. Visualization of hydrogen diffusion in steels by high sensitivity hydrogen microprint technique. Science and Technology of Advanced Materials 4, 45 – 551. Kharchenko, E. V., Student O. Z., Chumalo H. V., 2017. Influence of the degradation of 17G1S steel on its properties after operation in the gas main. Materials Science 53(2), 207 – 215. Konovalenko I., Maruschak P., Brezinov J., Brezina J., 2019. Morphological characteristics of dimples of ductile fracture of VT23M titanium alloy and identification of dimples on fractograms of different scale. Materials 12, 2051. Kosarevych, R. Ya., Student, O. Z., Svirs’ka, L. M., Rusyn, B. P., Nykyforchyn, H. M., 2013.Computer analysis of characteristic elements of fractographic images. Materials Science 48(4), 474 – 481. Kotrechko, S. O., Krasowsky, A. Y., Meshkov, Y. Y., Torop, V. M., 2004. Effect of long-term service on the tensile properties and capability of pipeline steel 17GS to resist cleavage fracture. International Journal of Pressure Vessels and Piping 81(4), 337 – 344. Krasovskii, A. Ya., Orynyak, I. V., 2010. Strength and reliability of piping systems. Strength of Materials 42, 613 – 621. Krechkovs’ka, H. V., Yanovs’kyi , S. R., Student, O. Z., Nykyforchyn, H. М., 2015. Fractographic signs of the in-service degradation of welded joints of oil mains. Materials Science 51(2), 165 – 171. Krechkovs’ka, H. V., 2016. Fractographic signs of the mechanisms of transportation of hydrogen in structural steels. Materials Science 51(4), 509 – 513. Krechkovs ’ ka, H. V., Mytsyk, A. B., Student, O. Z., Nykyforchyn, H. M., 2016. Diagnostic indications of the in-service degradation of the pressure regulator of a gas-transportation system. Materials Science 52(2), 233 – 239. Krechkovs’ka , H. V., Student, O. Z., 2017. Determination of the degree of degradation of steels of steam pipelines according to their impact toughness on specimens with different geometries of notches. Materials Science 52(4), 566 – 571. Kryzhanivs ’ kyi, E .І. , Nykyforchyn, H.M., 2011. Specific features of hydrogen-induced corrosion degradation of steels of gas and oil pipelines and oil storage reservoirs. Materials Science 47(2), 127 – 138. Maruschak, P. O., Sorochak, A. P., Vuherer, T., Prentkovskis, O., Yasniy, O. P., Bishchak, R. T., 2016. Impact toughness and deformation parameters of fracture of railway axle material. Arabian Journal for Science and Engineering 41(5), 1647 – 1655. Maruschak, P. O., Panin, S. V., Chausov, M. G., Bishchak, R. T., Polyvana, U. V., 2017. Effect of long-term operation on steels of main gas pipeline. Reduction of static fracture toughness. Journal of Natural Gas Science and Engineering 38, 182 – 186. Maruschak, P., Panin, S., Chausov, M., Bishchak, R., Polyvana, U., 2018. Effect of long-term operation on steels of main gas pipeline: Structural and mechanical degradation. Journal of King Saud University – Engineering Sciences 30 ( 4), 363 – 367. Mohtadi-Bonab, M. A., Szpunar, J. A., Basu, R, Eskandari, M., 2015. The mechanism of failure by hydrogen induced cracking in an acidic environment for API 5L X70 pipeline steel. International Journal of Hydrogen Energy 40(2), 1096 – 1107. Nykyforchyn, H., 2013. Environmentally assisted degradation of the physical and mechanical properties of long-term exploited structural steels. ESIS Newsletter 52, 20 – 24. Student O.Z., Dudziński, W., Nykyforchyn, H.M., Kamińska, A., 1999. Effect of high-temperature degradation of heat-resistant steel on the mechanical and fractographic characteristics of fatigue crack growth. Materials Science 35(4), 499 – 508. Student, O. Z., Rusyn, B. P., Kysil’, B. P., Kobasyar, M. I., Stakhiv, T. P., Markov, A. D., 2003. Quantitative analysis of structural changes in steel caused by high-temperature holding in hydrogen. Materials Science 39(1 )б 17 – 24. Taylor, N., Nykyforchyn, H. M., Tsyrulnyk, O. T., Student, O. Z., 2009. Effect of hydrogenation on the fracture mode of a reactor pressure-vessel steel. Materials Science 45(5), 613 – 625. Zhu ravel’ , I. M. , Svirs’ka, L. M., Student, O. Z., Vorobel’, R. A., Nykyforchyn H. M., 2009. Automated determination of grain geometry in an exploited steam-pipeline steel Materials Science 45(3) 350 – 357.

Made with FlippingBook - Online magazine maker