PSI - Issue 2_B
I.Yu. Smolin et al. / Procedia Structural Integrity 2 (2016) 3353–3360 I.Yu. Smolin et al. / Structural Integrity Procedia 00 (2016) 000 – 000
3360
8
Acknowledgements
The research was supported by “The Tomsk State University Academic D.I. Mendeleev Fund Program” , grant 8.2.19.2015 (section 2), and the Program of basic scientific research of the Russian Academy of Sciences in 2013 – 2020, project 23.2.3 (section 4). Calculations were performed using supercomputer resources of Tomsk State University. The authors thank their colleagues S.N. Kulkov, S.P. Buyakova, N.L. Savchenko and T.Yu. Sablina (ISPMS SB RAS) for providing SEM picture of zirconia and the approximation data of their experimental results.
References
Bruno, G., Efremov, A.M., Levandovskyi, A.N., Clausen, B., 2011. Connecting the macro- and microstrain responses in technical porous ceramics: modeling and experimental validations. Journal of Materials Science 46, 161 – 173. Bruno, G., Kachanov, M., 2013a. On modeling of microstresses and microcracking generated by cooling of polycrystalline porous ceramics. Journal of the European Ceramic Society 33, 1995 – 2005. Bruno, G., Kachanov, M., 2013b. Porous microcracked ceramics under compression: Micromechanical model of non-linear behavior. Journal of the European Ceramic Society 33, 2073 – 2085. Buyakova, S.P., Kulkov, S.N., 2007. Structure, phase composition and technologies features of zirconia-based nanosystems. Nanotechnologies in Russia 1, 119 – 132. (in Russian). Chen, Q., Baino, F., Spriano, S., Pugno, N.M., Vitale-Brovarone, C., 2014. Modelling of the strength – porosity relationship in glass-ceramic foam scaffolds for bone repair. Journal of the European Ceramic Society 34, 2663 – 2673. Kalatur, E., Buyakova, S., Kulkov, S., Narikovich, A., 2014. Porosity and mechanical properties of zirconium ceramics. AIP Conference Proceedings 1623, 225 – 228. Kanit, T., Forest, S., Jeulin, D ., N’Guyen, F., 2011. Singleton S. Virtual improvement of ice cream properties by computational homogenization of microstructures. Mechanics Research Communications 38, 136 – 140. Karakulov, V.V., Smolin, I.Yu., Skripnyak, V.A., 2014. Numerical simulation of effective mechanical properties of stochastic composites with consideration for structural evolution under intensive dynamic loading. AIP Conference Proceedings 1623, 237 – 240. Konovalenko, Ig.S., Smolin, A.Yu., Psakhie, S.G., 2013. Multiscale approach to description of deformation and fracture of brittle media with hierarchical porous structure on the basis of movable cellular automaton method. Frattura ed Integrità Strutturale 24, 75 – 80. Kostandov, Yu.A., Makarov, P.V., Eremin, M.O., Smolin, I.Yu., and Shipovskii, I.E., 2013. Fracture of compressed brittle bodies with a crack. International Applied Mechanics 1, 95 – 101. Kulkov, S.N., Buyakova, S.P., Maslovsky, V.I., 2003. Structure, phase composition and mechanical properties of zirconia based ceramics. Bulletin of the Tomsk State University 13, 34 – 57. (in Russian). Makarov, P.V., 2008. Mathematical theory of evolution of loaded solids and media. Physical Mesomechanics 5 – 6, 213 – 227. Makarov, P.V., Eremin, M.O., 2013. Fracture model of brittle and quasibrittle materials and geomedia. Physical Mesomechanics 3, 207 – 226. Manoylov, A.V., Borodich, F.M., Evans, H.P., 2013. Modelling of elastic properties of sintered porous materials. Proceedings of the Royal Society A 469, 20120689. Michel, J.C., Moulinec, H., Suquet, P., 1999. Effective properties of composite materials with periodic microstructure: A computational approach. Computer Methods in Applied Mechanics and Engineering 172, 109 – 143. Roberts, A.P., Garboczi, E.J., 2000. Elastic properties of model porous ceramics. Journal of the European Ceramic Society 83, 3041 – 3048. Savchenko, N., Sevostyanova, I., Sablina, T. , Gömze , L., Kulkov, S., 2014. The influence of porosity on the elasticity and strength of alumina and zirconia ceramics. AIP Conference Proceedings 1623, 547 – 550. Saxena, R., Keller, T.S., 2000. Computer modeling for evaluating trabecular bone mechanics. In: An, Y.H., Draughn, R.A. (Eds.). Mechanical testing of bone and the bone – implant interface. CRC Press LLC, New York, p. 407 – 436. Smolin, A.Yu., Eremina, G.M., Konovalenko, Ig.S., Psakhie, S.G., 2014a. 3D Modeling of the mechanical behavior of ceramics with pores of different size. AIP Conference Proceedings 1623, 591 – 594. Smolin, A.Yu., Roman, N.V., Konovalenko, I.S., Anikeeva, G.M., Psakhie, S.G., 2014b. 3D simulation of dependence of mechanical properties of porous ceramics on porosity. Engineering Fracture Mechanics 130, 53 – 64. Smolin, I.Yu., Eremin, M.O., Makarov, P.V., Evtushenko, E.P., Kulkov, S.N., and Buyakova S.P., 2014c. Brittle porous material mesovolume structure models and simulation of their mechanical properties. AIP Conference Proceedings 1623, 595 – 598. Ursenbach, C.P., 2001. Simulation of elastic moduli for porous materials. CREWES Research Report 13, 83 – 98. Wilkins, M.L., 1999. Computer simulation of dynamic phenomena. Berlin: Springer-Verlag. Xu, Y., Zhang, P., Lu, H., Zhang, W., 2015. Numerical modeling of oxidized C/SiC microcomposite in air oxidizing environments below 800°C: Microstructure and mechanical behavior. Journal of the European Ceramic Society 35, 3401 – 3409.
Made with FlippingBook Digital Publishing Software