PSI - Issue 2_B

Yu.G. Matvienko et al. / Procedia Structural Integrity 2 (2016) 026–033 Author name / Structural Integrity Procedia 00 (2016) 000–000

33

8

structural integrity assessment. Conservativity of elastic approach in elastic-plastic fracture mechanics from a viewpoint of the two-parameter J - A fracture criterion has been analysed. Acknowledgements The authors acknowledge the support of the Russian Science Foundation (Project N 14-19-00383). References Anderson, T.L., 2005. Fracture Mechanics: Fundamentals and Applications, CRC Press, Boca Raton. Beremin FM., 1983. A local criterion for cleavage fracture of a nuclear pressure vessel steel. Metall. Mater. Trans A 14, 2277-2287. Chao Y.J., Yang S., Sutton M.A., 1994. On the fracture of solids characterized by one or two parameters: theory and practice. J. Mech. Phys. Solids 42, 629-647. Cherepanov, G.P., 1967. The propagation of cracks in a continuous medium. J. Appl. Math. Mech. 31, 503-512. Chiesa, M., Nyhus, B., Skallerud, B., Thaulow, C., 2001. Efficient fracture assessment of pipelines. A constraint-corrected SENT specimen approach. Eng. Fract. Mech. 68, 527–547. Guo, W., 1999. Three-dimensional analyses of plastic constraint for through-thickness cracked bodies. Eng. Fract. Mech. 62, 383–407. Henry, B.S., Luxmoore, A.R., 1997. The stress triaxiality constraint and the Q-value as ductile fracture parameter. Eng. Fract. Mech. 57, 375–390. Hutchinson, J.W., 1968. Singular behavior at the end of a tensile crack in a hardening material. J. Mech. Phys. Solids 16, 13-31. Li F.Z., Shih C.F., Needleman A, 1985. A comparison of methods for calculating energy release rates. Eng. Fract. Mech. 21, 405-421. Liu, S., Chao, Y.J., 2003. Variation of fracture toughness with constraint. International Journal of Fracture 124, 113-117. Meliani, H.M., Matvienko, Yu.G., Pluvinage, G., 2011. Two-parameter fracture criterion (Kρ,c-Tef,c) based on notch fracture mechanics. Int. J. Fract. 167, 173–182. Mudry F., 1987. A local approach to cleavage fracture. Nucl. Eng. and Design 105, 65-76. Nikishkov G.P., Atluri S.N., 1987. Calculation of fracture mechanics parameters for an arbitrary three-dimensional crack by the equivalent domain integral method. Int. J. Numer. Meth. Eng. 24, 1801-1821. Nikishkov, G.P., 1995. An algorithm and a computer program for the three-term asymptotic expansion of elastic–plastic crack tip stress and displacement fields. Eng. Fract. Mech. 50, 65–83. Nikishkov, G.P., Bruckner-Foit, A. and Munz, D., 1995. Calculation of the second fracture parameter for finite cracked bodies using a three-term elastic-plastic asymptotic expansion. Eng. Fract. Mech. 52, 685-701. Nikishkov, G.P. 2015. Estimate of conservativity of elastic approach to elastic–plastic crack problems using two-parameter J–A fracture criterion, Eng. Fract. Mech. 138, 92–99. Nikishkov, G.P. 2016. Prediction of fracture toughness dependence on constraint parameter A using the weakest link model, Eng. Fract. Mech. 152, 193-200. Nikishkov, G.P., Matvienko, Yu.G., 2016. Elastic-plastic constraint parameter A for test specimens with thickness variation, Fatig. Fract. Eng. Mater. Struct. (published online 18 JAN 2016, DOI:10.1111/ffe.12390) O'Dowd, N.P., Shih, C.F., 1991. Family of crack-tip fields characterized by a triaxiality parameter. - I. Structure of fields. J. Mech. Phys. Solids 39, 989–1015. Pluvinage, G., Capelle, J., Hadj Méliani, M., 2014. A review of fracture toughness transferability with constraint and stress gradient. Fatig. Fract. Eng. Mater. Struct. 37, 1165–1185. Rice, J.R., 1968. A path independent integral and the approximate analysis of strain concentration by notches and cracks. J. Appl. Mech. ASME 35, 379-386. Rice, J.R., Rosengren, G.F., 1968. Plane Strain deformation near a crack tip in a power law hardening material. J. Mech. Phys. Solids 16, 1-12. Ritchie R.O., Knott J.F., Rice J.R., 1973. On the relationship between critical tensile stress and fracture toughness in mild steel. J. Mech. Phys. Solids 21, 395-410. Ruggieri, C., Dodds, R.H. Jr., 2015. An engineering methodology for constraint corrections of elastic-plastic fracture toughness Part I: A review on probabilistic models and exploration of plastic strain effects. Eng. Fract. Mech. 134:368-390. Sorem, W.A., Dodds, R.H., Rolfe, S.T., 1991. Effects of crack depth on elastic plastic fracture toughness. Int. J. Fract. 47, 105–126. Sumpter, J.D.G., Forbes, A.T., 1992. Constraint based analysis of shallow cracks in mild steel. Shallow Crack Fracture Mechanics, Toughness Tests and Applications, Procs of the Int Conf. Cambridge, UK, Paper 7. Sumpter J.D.G., 1993 An experimental investigation of the T stress approach. Constraint Effects in Fracture, ASTM STP 1171, E.M.Hackett, K.- H.Schwalbe and R.H.Dodds Eds., ASTM, Philadelphia, 492-502. Wang, Z.X., Shi, H.-J., Lu, J., 2008. Size effects on the ductile/brittle fracture properties of the pressure vessel steel 20 g. Theor. Appl. Fract. Mech. 50, 124–131. Yang, S., Chao, Y.J., Sutton, M.A., 1993. Higher-order asymptotic fields in a power-law hardening material. Eng. Fract. Mech. 45, 1–20.

Made with FlippingBook Digital Publishing Software