PSI - Issue 2_A

C. Ruffing et al. / Procedia Structural Integrity 2 (2016) 3240 – 3247 Ruffing/ Structural Integrity Procedia 00 (2016) 000–000

3247

8

5. Acknowledgement The authors would like to thank the DFG (German Research Foundation) for the financial support of this work under the grant KE 1426/2-1. References Chapetti, M.D., Miyata, H., Tagawa, T., Miyata, T., Fujioka, M., 2004. Fatigue strength of ultra-fine grained steels. Materials Science and Engineering A 381, 331-336. Furuya, Y., Hirukawa, H., Matsuoka, S., Torizuka, S., Kuwahara, H., 2008. Fatigue Properties of Nitrided Ultrafine Ferrite-Cementite Steels under Rotating Bending Fatigue Testing. Metallurgical and Materials Transactions A 39, 2068-2076. Grad, P., Reuscher, B., Brodyanski, A., Kopnarski, M., Kerscher, E., 2012. Mechanism of fatigue crack initiation and propagation in the very high cycle fatigue regime of high-strength steels. Scripta Materialia 67, 838-841. Höppel, H.W., May, J., Göken, M., 2008. Cyclic Deformation Behaviour and Fatigue Lives of Ultrafine-Grained Aluminium-Magnesium Alloys. Materials Science Forum 584-586, 840-845. Kerscher, E., Lang, K.-H., Vöhringer, O., Löhe, D., 2008. Increasing the fatigue limit of a bearing steel by dynamic strain ageing. International Journal of Fatigue 30, 1838-1842. Kerscher, E., Lang, K.-H., 2010. Influence of thermal and thermomechanical treatments on the fatigue limit of a bainitic high-strength bearing steel. Procedia Engineering 2, 1731-1739. Kerscher, E., Lang, K.-H., Löhe, D., 2011. Boundaries for increasing the fatigue limit of the bearing steel SAE 52100 by thermomechanical treatments. Procedia Engineering 10, 1985-1990. Khatibi, G., Horky, J., Weiss, B., Zehetbauer, M.J., 2010. High cycle fatigue behaviour of copper deformed by high pressure torsion. International Journal of Fatigue 32, 269-278. Kim, H.-K., Choi, M.-I., Chung, C.-S., Shin, D.-H., 2002. Fatigue crack growth behavior in ultrafine grained low carbon steel. KSME International Journal 16, 1246-1252. McGreevy, T.E., Socie, D.F., 1999. Competing roles of microstructure and flaw size. Fatigue and Fracture of Engineering Materials and Structures 22, 495-508. Mughrabi, H., Höppel, H.W., 2010. Cyclic deformation and fatigue properties of very fine-grained metals and alloys. International Journal of Fatigue 32, 1413-1427. Murakami, Y., Kodama, S., & Konuma, S. (1989). Quantitative evaluation of effects of non-metallic inclusions on fatigue strenght of high strength steels. I: Basic fatigue mechanism and evaluation of correlation between the fatigue fracture and the size and location of non-metallic inclussions. International Journal of Fatigue, 11, 5, 291-298. Murakami, Y., Nomoto, T., Ueda, T., 2000. On the mechanism of fatigue failure in the superlong life regime (N>10 7 cycles). Part II: influence of hydrogen trapped by inclusions. Fatigue & Fracture of Engineering Materials & Structures 23, 903-910. Niendorf, T., Canadinc, D., Maier, H.J., Karaman, I., Sutter, S.G., 2006. On the fatigue behavior of ultrafine-grained interstitial-free steel. International Journal of Materials Research 97, 1328-1336. Niendorf, T., Rubitschek, F., Maier, H.J., Canadinc, D., Karaman, I., 2010. On the fatigue crack growth–microstructure relationship in ultrafine grained interstitial-free steel. Journal of Materials Science 45, 4813-4821. Ning, J., Courtois-Manara, E., Kurmanaeva, L., Ganeev, A.V., Valiev, R.Z., Kübel, C., Ivanisenko, Y., 2013. Tensile properties and work hardening behaviors of ultrafine grained carbon steel and pure iron processed by warm high pressure torsion. Materials Science and Engineering A 581, 8-15. Ruffing, C., Ivanisenko, Y., Kerscher, E., 2013. Spannungsberechnung bei 4-Punkt-Biegung von Mikroprobenmittels der Finiten-Elemente Methode. Fortschritte in der Werkstoffprüfung für Forschung und Praxis 279-284. Ruffing, C., Kerscher, E., 2014. Fatigue Behavior of Ultrafine Grained Medium Carbon Steel with Different Carbide Morphologies Processed by High Pressure Torsion. Advanced Materials Research 891-892, 428-433. Ruffing, C., Ivanisenko, Yu., Kerscher, E., 2014. Fatigue behaviour of ultrafine grained medium Carbon steel processed by severe plastic deformation. 6 th International Conference on Nanomaterials by evere Plastic Deformation. IOP Conf. Series: Materials Science and Engineering 63, 012163 Ruffing, C., Kobler, A., Courtois-Manara, E., Prang, R., Kübel, C., Ivanisenko, Y., Kerscher, E., 2015. Fatigue Behavior of Ultrafine-Grained Medium Carbon Steel with Different Carbide Morphologies Processed by High Pressure Torsion. Metals 5, 891-909. Sakai, T., Sato, Y., Oguma, N., 2002. Characteristic S–N properties of high ‐ carbon–chromium ‐ bearing steel under axial loading in long ‐ life fatigue. Fatigue & Fracture of Engineering Materials & Structures 25, 765-773. Shiozawa, K., Hasegawa, T., Kashiwagi, Y., Lu, L., 2009. Very high cycle fatigue properties of bearing steel under axial loading condition. International Journal of Fatigue 31, 880-888. Spriestersbach, D., Brodyanski, A., Lösch, J., Kopnarski, M., Kerscher, E. 2016. Very high cycle fatigue of bearing steels with artificial defects in vacuum. Materials Science and Technology, published online. http://dx.doi.org/10.1080/02670836.2015.1119931. Torizuka, S., Kuntz, M., Furuya, Y., Bacher-Hoechst, M., 2012. Effect of Tensile Strength and Microstructure on Notch-fatigue Properties of Ultrafine-grained Steels. ISIJ International 52, 910-914. Valiev, R.Z., Alexandrov, I.V., Zhu, Y.T., Lowe, T.C., 2002. Paradox of Strength and Ductility in Metals Processed By Severe Plastic Deformation. Journal of Materials Research 17, 5-8. Vinogradov, A., 2007. Fatigue limit and crack growth in ultra-fine grain metals produced by severe plastic deformation. Journal of Materials Science 42, 1797-1808. Zrnik, J., Pippan, R., Scheriau, S., Kraus, L., Fujda, M. 2010. Microstructure and mechanical properties of UFG medium carbon steel processed by HPT at increased temperature. Journal of Material Science 45, 4822-4826.

Made with FlippingBook. PDF to flipbook with ease