PSI - Issue 2_A

E. Frutos et al. / Procedia Structural Integrity 2 (2016) 1391–1404 Author name / Structural Integrity Procedia 00 (2016) 000–000

1403 13

higher than 10% of the total thickness. Crack length can be measured with each new impact and therefore the correct indentation model for calculating fracture toughness can be selected. This allows studying the evolution of h/a or l/a ratios, as a function of the impacts, i.e. the crack geometry, which evolves from Palmqvist crack (Laugier IM) to half penny crack (Anstins IM). Consequently, it is possible to study the proper evolution of the different values of fracture toughness as a function of different  . Fracture toughness values obtained for W/Cu nano-multilayers, from Anstins indentation model, show an increase from 1.77 ���√� to 1.90 ����√� when the periodicity,  , is reduced from 60 to 30 nm and finally, a decrease until 1.77 ���√� for  =10 nm. Finally, degree of accuracy of fracture toughness values, calculated from a crack induced by repetitive nano-impact tests, using the classic Anstins indentation model has been compared in the framework of fracture toughness mechanics, getting three new K Ic values for these three  . Thus, fracture toughness values increase from 1.82 ���√� to 1.97 ���√������  is reduced from 60 to 30 nm, and then descend to 1.62 ���√� for  =10 nm. These values are to identical to those reported above, which demonstrates that proposed methods are useful to calculate quantitative fracture toughness values in thin nano-multilayers. Acknowledgements The authors wish to express their thanks for the financial support of the European Commission through the project RADINTERFACES (Grant Agreement Number 263273) and the Czech Science Foundation through the project 14 32801P. References Anderson, P. M., Foecke, T., Hazzledine, P. M., 1999. Dislocation-Based Deformation Mechanisms in Metallic Nanolaminates. MRS Bull. 27, 27 33. Anstis, G. R., Chantikul, P., Lawn B. R., Marshall D. B., 1981. A Critical Evaluation of Indentation Techniques for Measuring Fracture Toughness: I, Direct Crack Measurements. J. Am. Ceram. Soc. 64, 533-538. Banerjee, R., Thompson, G. R., Anderson, P. M., Fraser, H. L., 2003. Sputter deposited nanocrystalline Ni-25Al alloy thin films and Ni/Ni 3 Al multilayers. Thin Solid Films. 424, 93-98. Beuth, J. L., 1992. Cracking of thin bonded films in residual tension Jr. Int J Solids Struct. 29, 1657-1675. Cammarata, R. C., Sieradzki, K., Spaepen, F., 2000. Simple model for interface stresses with application to misfit dislocation generation in epitaxial thin films. J. Appl. Phys. 87, 1227. Clemens, B. M., Kung, H., Barnett, S. A., 1999. Structure and Strength of Multilayers. MRS Bull. 24, 20-26. Damani, R., Gstrein, R., and Danzer, R., 1996. Critical Notch-Root Radius effect in SENB-S Fracture Toughness Testing. J. Eur. Ceram. Soc. 16, 695-702. Demkowicz, M. J., Argon, A. S., Farkas, D., Frary, M., 2007. Simulation of plasticity in nanocrystalline silicon. Philos. Mag. 87, 4253-4271. Demkowicz, M. J., Hoagland, R. G., Hirth, J. P., 2998. Interface Structure and Radiation Damage Resistance in Cu-Nb Multilayer Nanocomposites. Phys. Rev. Lett. 100, 136102. Donohue, A., Spaepen, F., Hoagland, R. G., Misra, A., 2007. Suppression of the shear band instability during plastic flow of nanometer-scale confined metallic glasses. Appl. Phys. Lett. 91, 241905. Dundurs, J., Bogy, D., B., 1969. Edge-Bonded Dissimilar Orthogonal Elastic Wedges Under Normal and Shear Loading. J. Appl. Mech. 36, 650 652. Embury, J., D., Hirth, J., P., 1994. On dislocation storage and the mechanical response of fine scale microstructures. Acta Metall. Mater. 42, 2051 2056. Frutos, E., González-Carrasco, J., L., 2013. A method to assess the fracture toughness of intermetallic coatings by ultramicroindentation techniques: Applicability to coated medical stainless steel. Acta Mater. 61(6), 1886–1894. Frutos, E., González-Carrasco, J., L., Polcar, T., 2016. Nanomechanical characterization of alumina coatings grown on FeCrAl alloy by thermal oxidation. J. Mech. Behav. Biomed. Mater. 57, 310-320. Frutos, E., González-Carrasco, J., L., Polcar, T ., 2016. Repetitive nano-impact tests as a new tool to measure fracture toughness in brittle materials. J. Eur. Ceram. Soc. (In press). Gao, Y., 2011. Radiation tolerance of Cu/W multilayered nanocomposites. Radiation tolerance of Cu / W multilayered nanocomposites. J.Nucl.Mater. 413, 11-15. Han, S., M., Phillips, M., A., Nix, W., D., 2009. Study of strain softening behavior of Al–Al 3 Sc multilayers using microcompression testing. Acta Mater. 57, 4473-4490. Harms, U., Schwarz, R., B., 2002. Anomalous modulus and work function at the interfaces of thin films. Phys. Rev. B. 65, 085409-8. Hoagland, R., G., Mitchell, T., E., Hirth, J., P., 2002. Kung H. On the strengthening effects of interfaces in multilayer fee metallic composites. Philos. Mag. A. 82, 643-664. Huang, H., Spaepen, F., 2000. Tensile testing of free-standing Cu, Ag and Al thin films and Ag/Cu multilayers. Acta Mater. 48, 3261-3269. Koehler, J., S., 1970. Attempt of design a strong solid. Phys. Rev. B. 2, 547-551. Lai, W., S., Yang, M., J., 2007. Observation of largely enhanced hardness in nano-multilayers of the Ag–Nb system with positive enthalpy of formation. Appl. Phys. Lett. 90, 181917.

Made with FlippingBook. PDF to flipbook with ease