PSI - Issue 2_A

Takashi Sumigawa et al. / Procedia Structural Integrity 2 (2016) 1375–1382 Author name / Structural Integrity Procedia 00 (2016) 000–000

1382

8

Schwaiger, R., Kraft, O., 2003b. Size effects in the fatigue behavior of thin Ag films. Acta Materialia 51, 195-206. Sumigawa, T., Kitamura, T., Ohishi, K., 2004. Slip Behaviour near a Grain Boundary in High-Cycle Fatigue of Poly-Crystal Copper. Fatigue & Fracture of Engineering Materials and Structures 27. 495-503. Sumigawa, T., Shishido, T., Murakami, T., Iwasaki, T., Kitamura, T., 2010, Evaluation on Plastic Deformation Property of Copper Nano-Film by Nano-Scale Cantilever Specimen, Thin Solid Films, 518, 6040-6047. Thompson, N., Wassworth, N., Louat, N., 1956. The Origin of Fatigue Fracture in Copper, Philosophical Magazine 1(2), 113-126. Uchic, M.D., Dimiduk, D.M., Florando, J.N., Nix, W.D., 2004. Sample dimensions influence strength and crystal plasticity. Science 305, 986-989. Volkert, C.A., Lilleodden, E.T., 2006. Size effects in the deformation of sub-micron Au columns. Philosophical Magazine 86(33-35), 5567-5579. Weertman, J., Weertman, J.R., 1964. in “Elementary dislocation theory”. The Macmillan Company, New York: Collier-Macmillan Limited, London. Winter, A.T., 1974. A model for the fatigue of copper at low plastic strain amplitudes. Philosophical Magazine 30(4), 719-738. Woods, P.J., 1973. Low-amplitude fatigue of copper and copper-5 at.% aluminium single crystals. Philosophical Magazine 28(1), 155-191. Zhang, G.P., 2005. Damage behavior of 200-nm thin copper films under cyclic loading. Journal of Material Research 20(1), 201-207. Zhang, G.P., Sun, K.H., Zhang, B., Gong, J., Sun, C., Wang, Z.G., 2008. Tensile and fatigue strength of ultrathin copper films. Materials Science and Engineering A 387, 483-484.

Made with FlippingBook. PDF to flipbook with ease