PSI - Issue 19

Francesca Curà et al. / Procedia Structural Integrity 19 (2019) 388–394 Author name / Structural Integrity Procedia 00 (2019) 000 – 000

394

7

4. Conclusions

In the present paper the results of an experimental activity on multilayer nanocoated PU open cell foams are presented. Quasi-static and cyclic compression tests were performed. The particular aim was to characterize the effect of different number and kind of layers: PU and CNT nanoinks. The results of quasi-static cyclic preconditioning of specimens show that an increasing number of coating layers increases the maximum stress and the area of the hysteresis cycle. It can also be observed for all specimens a decrement in the maximum stress with cycles (stress softening) and this phenomenon is more evident increasing the number of layers. This difference in damaging behavior can be attributed to the coating layer contribution. This trend is linear for PU layers and non-linear for MW layers. For cyclic characterization the following parameters, obtained from the hysteresis loops, were chosen: Stiffness degradation, Secant modulus and Loss factor. From this first analysis, it appears that both strain amplitude and test frequency influence the foams characteristics. Further tests will validate from a quantitative point of view these evidences. Athanasopoulos, N., A. Baltopoulos, A., M. Matzakou, M., Vavouliotis, A., Kostopoulos, V., 2012. Electrical conductivity of polyurethane/MWCNT nanocomposite foams. Polym Composite 33(8), 1302-1312. Bandarian, M., Shojaei, A., Rashidi, A.M., 2011. Thermal, mechanical and acoustic damping properties of flexible open-cell polyurethane/multi walled carbon nanotube foams: effect of surface functionality of nanotubes. Polym Int, 60(3), 475-482. Bezazi, A., Scarpa, F., 2007. Mechanical behaviour of conventi onal and negative Poisson’s ratio thermoplastic polyurethane foams under compressive cyclic loading. International Journal of fatigue 29, 922-930. Chen, L.M., Schadler, L.S., Ozisik, R., 2011. An experimental and theoretical investigation of the compressive properties of multi-walled carbon nanotube/poly(methyl methacrylate) nanocomposite foams. Polymer, 52(13), 2899-2909. Chen, M.T., Zhang, L., Duan, S.S., Jing, S.L., Jiang, H., Luo, M.F., Li, C.Z.2014. Highly conductive and flexible polymer composites with improved mechanical and electromagnetic interference shielding performances. Nanoscale 6(7), 3796-3803. Chen, Y.J., Li, Y., Chu, B.T.T., Kuo, I.T., Yip, M., Tai, N., 2015. Porous composites coated with hybrid nano carbon materials perform excellent electromagnetic interference shielding. Composites: Part B , 70, 231-237. Curà, F., Sesana, R., 2014. Mechanical and thermal parameters for high-cycle fatigue characterization in commercial steels. Fatigue Fract Engng Mater Struct 37, 883 – 896. Dai, K., Ji, X., Xiang, Z.D., Zhang, W.Q., Tang, J.H., Li, Z.M., 2012. Electrical Properties of an Ultralight Conductive Carbon Nanotube/Polymer Composite Foam Upon Compression. Polym-Plast Technol, 51(3), 304-306. Davis, P. J., Rabinowitz, P., 2007. Methods of Numerical Integration Dover Books on Mathematics Series. Dover Publications, Inc, Mineola, N.Y. Dolomanova, V., Rauhe, J.C.M., Jensen, L.R., Pyrz, R., Timmons, A.B. 2011. Mechanical properties and morphology of nano-reinforced rigid PU foam. Journal of Cellular Plastics. J Cell Plast 47(1), 81-93. Govindjee, S., Simo, S., 1991. A micro-mechanically based continuum damage model for carbon black-filled rubbers incorporating Mullins' effect, J. Mech. Phys. Solids 39(I), 87-112. Hu, Z.L., Pang, Q., Ji, G.Q., Wu, G.H., 2018. Mechanical behaviors and energy absorption properties of Y/Cr and Ce/Cr coated open-cell nickel based alloy foams. Rare Met. 37(8), 650-661. Kang, T., Yoon, J., Kim, D., Kum, S., Huh, Y., Hahn, J., Moon, S., Lee, H., Kim, Y., 2007. Sandwich-Type Laminated Nanocomposites Developedby Selective Dip-Coating of Carbon Nanotubes. Adv. Mater 19, 427-432. Lazan, B. J., 1968. Damping of materials and members in structural mechanics (Oxford Pergamon Press Oxford). Lee, J., Kim, G.H., Ha, C.S., 2012. Sound Absorption Properties of Polyurethane/Nano-Silica Nanocomposite Foams. J Appl Polym Sci, 123(4), 2384-2390. Ogden, R.W., Roxburgh, D.G. 1999. A pseudo – elastic model for the Mullins effect in filled rubberProceedings of the Royal Society of London. 455, 2861 – 2877. Sung, C.H., Lee, K.S., Lee, K.S., Oh, S.M., Kim, J.H., Kim, M.S., Jeong, R.M., 2007. Sound damping of a polyurethane foam nanocomposite. Macromol Res, 15(5), 443-448. Verdejo, R., Stämpfli, R., Alvarez-Lainez, M., Mourad, S., Rodriguez-Perez, M.A., Br ü hwiler, P.A., Shaffer, M., 2009. Enhanced acoustic damping in flexible polyurethane foams filled with carbon nanotubes. Compos Sci Technol, 69(10), 1564-1569. Ungar, E.E., Kerwin, E.M. 1962. Loss factors of viscoelastic systems in terms of energy concepts. The Journal of the Acoustical Society of America, 34(7), 954-957. Zhang, X.C., Peng, H.X., Limmack, A.P., Scarpa, F., 2014. Viscoelastic damping behaviour of cup stacked carbon nanotube modified epoxy nanocomposites with tailored interfacial condition and re-agglomeration. Compos Sci Technol, 105, 66-72. Zhang, X.C., Scarpa, F., McHale, R., Limmack, A.P., Peng, H.X., 2016. Carbon nano-ink coated open cell polyurethane foam with micro architectured multilayer skeleton for damping applications. RSC Advances, 6(83), 80334-80341. References

Made with FlippingBook - Online magazine maker