PSI - Issue 19

Zhu Li et al. / Procedia Structural Integrity 19 (2019) 528–537

537

Author name / Structural Integrity Procedia 00 (2019) 000 – 000

10

structure as evidenced by the PSD response. The higher applied stress and increased cycle times under resonance induce greater fatigue damage to the structure. Designing the natural frequency of the structure to be far from the frequencies of the swept narrowband inputs can reduce fatigue damage, thus extending lifetime. The modeling method developed here can be easily adapted to optimize the design of engineering structural components in the early design phase prior to building prototypes for laboratory vibration tests. References [1]. Hoksbergen, J., “Defining the Global Error of a Multi - Axis Vibration Test”, Sound and Vibration 48(9):8 -13, 2014. [2]. Habtour, E., Connon, W.S., Pohland, M.F, Stanton, S.C., Paulus, M., and Dasgupta, A., “Review of response and damage of linea r and nonlinear systems under multiaxial vibration”, Shock and Vibration, 2014: Article ID 294271, 21 pages, 2014. [3]. Steinwolf, A., “Shaker random testing with low kurtosis: Review of the methods and application for sigma limiting” Shock and Vibration, 17(3): 219-231, 2010. [4]. Rotem, A., "Accelerated fatigue testing method." International Journal of Fatigue, 3(4): 211-215, 1981. [5]. Allegri, G. and Zhang, X., "On the inverse power laws for accelerated random fatigue testing", International Journal of Fatigue, 30(6): 967 977, 2008. [6]. Özsoy, S., Celik. M. and Kadıoğlu, F.S., "An accelerated life test approach for aerospace structural components", Engineering failure analysis, 15(7): 946-957, 2008. [7]. Shires, D., "On the time compression (test acceleration) of broadband random vibration tests", Packaging Technology and Science, 24(2): 75-87, 2011. [8]. Xu, K., Wu, Y., and Wu, Q., "Development of vibration loading profiles for accelerated durability tests of ground vehicles", PhD diss, University of Manitoba, 2011. [9]. Eldoǧan, Y., and Cigeroglu, E., "Vibration fatigue analysis of a cantilever beam using different fatigue theories", In Topics in Modal Analysis, 7:471-478, 2014. [10]. Wolfsteiner, P., and Sedlmair, S., "Deriving gaussian fatigue test spectra from measured non gaussian service spectra", Procedia Engineering, 101: 543-551, 2015. [11]. Lutes, L.D., and Larsen, C.E., “An improved spectral method for variable amplitude fatigue prediction”, J Struct Div. ASCE, 116:1149– 64, 1990. [12]. Wirsching, P.H., Light, M.C., “Fatigue under wide band random stresses”, J Struct Div. ASCE, 106(ST7):1593– 607, 1980. [13]. Braccesi, C., Cianetti, F., Lori, G., Pioli, D., “Fatigue behaviour ana lysis of mechanical components subject to random bimodal stress process frequency domain approach”, Int J Fatigue 27(4):335– 45, 2005. [14]. Lutes, L.D., and Sarkani, S., “Random vibrations: analysis of structural and mechanical systems”, Butterworth -Heinemann, 2004. [15]. Dirlik, T., “Application of computers in fatigue analysis, Doctoral dissertation, University of Warwick, 1985. [16]. Miner, M.A., “Cumulative damage in fatigue”, J Appl Mech, 12:159– 64, 1945. [17]. Benasciutti, D., Braccesi, C., Cianetti, F., Cristofori, A., Tovo , R., “A Fatigue damage assessment in wide -band uniaxial random loadings by PSD decomposition: outcomes from recent research”, International Journal of Fatigue, 91:248– 250, 2016. [18]. Benasciutti, D., and Tovo, R., "Fatigue life assessment in non-Gaussian random loadings", International journal of fatigue, 28(7): 733-746, 2006. [19]. NATO/PFP UNCLASSIFIED, "AECTP 400 (Edition 3) – MECHANICAL ENVIRONMENTAL TESTS", 2006 [20]. Li, Z., Ince, A., and Lacombe, J., Fatigue Damage Modeling Approach Based on Evolutionary Power Spectrum Density, SAE Technical Paper, 2019-01-0524, 2019, https://doi.org/10.4271/2019-01-0524. [21]. Li, Z. and Ince, A., A unified frequency domain fatigue damage modeling approach for random-on-random spectrum, International Journal of Fatigue, 124:123-137, 2019, https://doi.org/10.1016/j.ijfatigue.2019.02.032. [22]. Gatti, P. L., “Applied Structural and Mechanical Vibrations: Theory and Methods”, CRC Press, 2014. [23]. Crandall, S. H., and William D. M., “Random vibration in mechanical systems”, Academic Press, 2014. [24]. Braccesi, C., Cianetti, F., Tomassini, L., “Random fatigue. A new frequency domain criterion for the damage evaluation of mec hanical components”, Int J Fatigue, 70:417– 427, 2015. [25]. Ince, A., “A mean stress correction model for tensile and compressive mean stress fatigue loadings”, Fatigue and Fracture of Engineering Materials and Structures, 40(6): 939-948, 2017. [26]. Ince, A., “A generalized mean stress correction model based on distortional strain energy”, International Journal of Fatigue, , 104: 273 -282, 2017. [27]. Ince, A., “A novel technique for multiaxial fatigue modelling of ground vehicle notched components”, International Journal of Vehicle Design”, 67: 294 -313, 2015. [28]. Ince, A., and G linka, G. “A Numerical Method for Elasto -Plastic Notch-Root Stress- Strain Analysis”, Journal of Strain Analysis for Engineering Design, 48(4):229-224, 2013, doi:10.1177/0309324713477638. [29]. Ince A. and Glinka G. “A generalized damage parameter for multiaxial fatigue life prediction under proportional and non-proportional loadings”, International Journal of Fatigue 62:34 -41, doi:10.1016/j.ijfatigue.2013.10.007. [30]. Ince, A. and Glinka, G. “Innovative Computational Modeling of Multiaxial Fatigue Analysis for Notched Components”, International Journal of Fatigue, 82(2):134-145, 2016, doi:10.1016/j.ijfatigue.2015.03.019.

Made with FlippingBook - Online magazine maker