PSI - Issue 19

Masanobu Kubota et al. / Procedia Structural Integrity 19 (2019) 520–527 Author name / Structural Integrity Procedia 00 (2019) 000 – 000

527

8

References

Kobayashi, H., 2015, Kouatsu suiso setubi no hirou kaiseki no kihon-teki kangae-kata (Fundamental approach for fatigue analysis of high-pressure hydrogen systems). JSME M&M Conference 2015. Tokyo, Japan, pp. "SL16-1"-"SL16-3". Yamabe, J., Takagoshi, D., Matsunaga, H., Matsuoka, S., Ishikawa, T., Ichigi, T., 2016, High-strength copper-based alloy with excellent resistance to hydrogen embrittlement. International Journal of Hydrogen Energy, 41, 15089-15094. ASME Boiler & Pressure Vessel Code. Section VIII, 2001, Rules for the Construction of Pressure Vessels. Division 1. New York, American Society of Mechanical Engineers. JIS B 8265, 2003, Construction of Pressure Vessel: General Principles. Tokyo, Japanese Standards Association. JIS B 8267, 2008, Construction of Pressure Vessel, Tokyo. Japanese Standards Association. Yamada, T., Kobayasi, H., 2012, Suiso station setubi ni siyou-suru zairyou no sentei-kijun (Criterion for the selection of materials for hydrogen station equipment). Journal of the High Pressure Gas Safety Institute of Japan, 49 (10), 885-893. Furuya, Y., Matsuoka, S., Shimakura, S., Hanamura, T., Torizuka, S., 2005, Gigacycle fatigue properties for high-strength low-alloy steel at 100 Hz, 600 Hz, and 20 kHz. Scripta Materialia, 52, 1163-1167. Suresh, S., 1991, Fatigue of Materials. Cambridge University Press, Great Britain, p. 129. Nishijima, S., 1980, Statistical analysis of fatigue test data. Journal of Japan Society for Materials Science, 29 (316), 24-29. Schneider, C. S. R, and Maddox, S. J., 2003, Best practice guide on statistical analysis of fatigue data. Doc: IIW-XIII-WG1-114-03, Cambridge, UK, International Institute of Welding. Yamabe, J., Yoshikawa, M. Matsunaga, H., Matsuoka, S., 2016, Effect of hydrogen pressure, test frequency and test temperature on fatigue crack growth properties of low-carbon steel in gaseous hydrogen. Procedia Structural Integrity, 2, 525-532. Miyamoto, T., Matsuo, T., Kobayashi, N., Mukaie, Y., Matsuoka, S., 2012, Characteristics of fatigue life and fatigue crack growth of SCM435 steel in high-pressure hydrogen gas. Transaction of the Japan Society of Mechanical Engineers, 78 (788), 531-546. Nakamura, J., Miyahara, M., Omura, T., Semba, H.,Wakita, M., Otome, Y., 2010, Degradation of fatigue properties in high pressure gaseous hydrogen environment evaluated by cyclic pressurization tests. Procedia Engineering, 2, 1235-1241. Kubota, M., and Kawakami, K., 2014, High-cycle fatigue properties of carbon steel and work-hardened oxygen free copper in high pressure hydrogen. Advanced Materials Research, 891-892, 575-580. Matsunaga, H., Yoshida, M., Kondo, R., Yamabe, J., Matsuoka, S., 2015, Slow strain rate tensile and fatigue properties of Cr-Mo and carbon steel in a 115 MPa hydrogen gas atmosphere. International Journal of Hydrogen Energy, 40, 5739-5748. Ogawa, Y., Matsunaga, H., Yamabe, J., Yoshioka, M., Matsuoka, S., 2017, Unified evaluation of hydrogen-induced crack growth in fatigue tests and fracture toughness tests of a carbon steel. International Journal of Fatigue, 103, 223 Kubota, M., Kawakami, K., 2014, High-cycle fatigue properties of carbon steel and work-hardened oxygen free copper in high pressure hydrogen. Advanced Materials Research, 891-892, 575-580. JSME S 002-1994, 1994, Toukei-teki hirou shiken-houhou (statistical fatigue testing method), Society of Mechanical Engineers, Japan, Tokyo. Macadre, A., Artamonov, M., Matsuoka, S., Furtado, J., 2011, Effects of hydrogen pressure and test frequency on fatigue crack growth properties of Ni-Cr-Mo steel candidate for a storage of a 70 MPa hydrogen filling station. Engineering Fracture Mechanics 78, 3196-3211 ANSI/ CSA CHMC1-2014, Test methods for evaluating material compatibility in compressed hydrogen applications – Metals. CSA, Ontario, Canada. Komoda, R., Kubota, M., Staykov, A., Ginet, P., Barbier, F., Furtado, J., 2019, Inhibitory effect of oxygen on hydrogen ‐ induced fracture of A333 pipe steel, Fatigue & Fracture of Engineering Materials & Structures, 42-6, 1387-1401. Somerday, B.P., Sofronis, P., Nibur. K.A., San Marchi, C., Kirchheim, R., 2013, Elucidating the variables affecting accelerated fatigue crack growth of steels in hydrogen gas with low oxygen concentrations. Acta Materialia, 61, 6153-6170. Oguma, H., Nakamura, T., 2013, Fatigue crack propagation properties of Ti-6Al-4V in vacuum environments, International Journal of Fatigue, 50, 89-93. Kubota, M, Yoshida, S., Dohu, K., Komoda, R., 2018, Effect of hydrogen on low-cycle fatigue behavior of SUS304 austenitic stainless steel, The ASMP2018, Bangkok, Thailand, Paper ID: 23. Nakamura, T., Kanako, M., Kazami, S., Noguchi, T., 2000, The effect of high vacuum environment on tensile fatigue properties of ti-6al-4v alloy. Journal of Society of Material Science Japan, 49-10, 1148-1154. Murakami, Y., Yamashita, Y., 2014, Prediction of life and scatter of fatigue failure originated at nonmetallic inclusions. Procedia Engineering 74, 6-11. Nagao, A, Koga, j., Takagi, S., Ono, H., Ishikawa, N., Experimental and computational studies on hydrogen entry into steel exposed to high pressure hydrogen gas. ISIJ conference, Tokyo, Japan, September 6-7, 2018. Staykov, A., Yamabe, J., Somerday, B. P., 2014, Effect of hydrogen on the hydrogen dissociation on iron surface. Quantum Chemistry, 114, 626 635.

Made with FlippingBook - Online magazine maker