PSI - Issue 18
Yaroslav Dubyk et al. / Procedia Structural Integrity 18 (2019) 622–629 Yaroslav Dubyk and Iryna Seliverstova / Structural Integrity Procedia 00 (2019) 000–000
624
3
2.1. Harmonic dent Assume the function of displacement in the form:
m
m
m
  
  
  
  
  
  
  cos sin u mn 
  sin cos v mn 
  cos cos w mn 
u C n 
x
v C n 
x
w C n 
x
,
,
(4)
l
l
l
General form of the equation of the dented shell:   , x    K U F
(5) Here   , x   F external load vector,   , x   U displacement vector,   , x   K stiffness matrix defined as:       , , , , , , T u x t v x t w x t         U (6)
T
   
   
   
   
N
2
2
x 
F
0 0
N
w
(7)
2 x R
2 2
The stiffness matrix K is symmetric, that is
, uv vu uw wu vw wv K K K K K K    : ,
uu K K K H K K K K K K    uv vu vv wu wv 
    
uw
K
  
(8)
vw
ww
Taking into account (8) all elements (9-11) are defined as:
2
2
2      2 2 1 1 2 R 
1
2
1 1 R x      2
K
x   
, u w w u K K ,
 
, u v K K
, v u  
(9)
, u u
R x 
  
  
2     2 1 
 
2
2
  
   
1
1
x     
 
1   
K
1 1  
, v w w v K K ,
 
 
 
(10)
  
 
, v v
2
2 2
2
2
2 2
2
2
R R  
x
R
R
2     2 1 
   
1
1
K
(11)
 
, w w
2 2
2
2
2
R
x R 
Taking into account expansion (4), we obtain an algebraic system of equations with respect to displacements:
  
   
  
   
2 n l
2
1
1
n
1 2
1 2
R
(12)
u C m   mn
v C n   mn
w   C  mn
0
l
R m 
m
Made with FlippingBook - Online magazine maker