PSI - Issue 17
Pranav S. Patwardhan et al. / Procedia Structural Integrity 17 (2019) 750–757 Author name / Structural Integrity Procedia 00 (2019) 000 – 000
6
755
0 100 200 300 400 500 600 700 800
100 150 200 250 300 350 400 450 500
(k)
(l)
p-L = 0.00934
Inconel 600 Atlas of Stress Strain curves
SAE 950X Krauss (1980)
p-L = 0.0099
Experimental Ramberg-Osgood fit Estimated
Experimental Ramberg-Osgood fit Estimated
True stress,MPa
True stress, MPa
0 50
0
0.1
0.2
0.3
0
0.05
0.1
0.15
0.2
True strain
True strain
0 100 200 300 400 500 600 700
600
(m)
(n)
500
p-L = 0.0094
400
p-L = 0.0166
300
SAE 980X Krauss (1980)
A663 Bethlehem (1985) Experimental Ramberg-Osgood fit Estimated
200
Experimental Ramberg-Osgood fit Estimated
True stress,MPa
100 True stress, MPa
0
0
0.05
0.1
0.15
0
0.05
0.1
0.15
0.2
True strain
True strain
100 150 200 250 300 350 400 450
0 100 200 300 400 500 600
(p)
(o)
p-L = 0.00213
p-L = 0.0111
A36 U.S. Steel (1971) Experimental Ramberg-Osgood fit Estimated
A242 Dolega (1953)
Experimental Ramberg-Osgood fit Estimated
True stress,MPa
True stress,MPa
0 50
0
0.005 0.01 0.015 0.02 0.025
0
0.05
0.1
0.15
True strain
True strain
Fig. 4 a-p. Comparison of true stress-strain curves from experimental data, fitted by the Ramberg- Osgood relationship and estimated using Luder’s plastic strain at plateau, p-L . As it is seen from Fig. 4 a-p, that by using true plastic yield strain at end of yield s tress plateau (plastic Luder’s strain) gives fairly good estimation of stress-strain curves, and thus strain hardening exponent N. Figure 5 compares the Ramberg-Osgood constants N=1/n and H calculated from experimental curve and estimated by the proposed method.
Made with FlippingBook Digital Publishing Software