PSI - Issue 17
Pranav S. Patwardhan et al. / Procedia Structural Integrity 17 (2019) 750–757 Author name / Structural Integrity Procedia 00 (2019) 000 – 000 In Eq. (14), both constants c and a are functions of the true plastic yield/Luder’s strain, − , as it is shown in Fig. 3. Now, the N values for a given material can be calculated using Eq. (14) together with the corresponding true plastic yield/Luder’s strain at the end of the plateau , − . 753 4
As can be seen from various experimental stress-strain curves depict in Fig. 4, that some materials show a plateau at yielding, where applied stress remains almost constant whereas associated Luder’s strain increases. This maximum value of th e plastic Luder’s strain would be used in estimation of the strain hardening exponent, N . Fig. 3. Graphs of a and c in Eq. (14) for different plastic yield strain value, ε py .
0 100 200 300 400 500 600 700
0 100 200 300 400 500 600 700 800 900
(a)
(b)
p-L = 0.0061
p-L = 0.0143
SM490 Kamaya (2016)
SQV2B Kamaya (2016)
Experimental Ramberg-Osgood fit Estimated
Experimental Ramberg-Osgood fit Estimated
True Stress,MPa
True stress, MPa
0
0.05
0.1
0.15
0.2
0
0.05
0.1
0.15
True Strain
True strain
0 100 200 300 400 500 600 700
0 100 200 300 400 500 600 700 800 900
(c)
(d)
STS 370 Kamaya (2016)
S45C Kamaya (2016)
p-L = 0.0106
Experimental Ramberg-Osgood fit Estimated
Experimental Ramberg-Osgood fit Estimated
True stress, MPa
True Stress, MPa
0
0.05
0.1
0.15
0.2
0
0.05
0.1
0.15
0.2
True strain
True Strain
Fig. 4. (Cont.)
Made with FlippingBook Digital Publishing Software