PSI - Issue 14
Manish Kumar et al. / Procedia Structural Integrity 14 (2019) 839–848
848 10
Manish Kumar et. al/ Structural Integrity Procedia 00 (2018) 000–000
Acknowledgements This work is done as part of doctoral thesis work of Mr. Manish Kumar under the scheme of Ministry of Human Resource Development, Government of India, and is partially supported by Defence Metallurgical Research Laboratory (DMRL), Defence Research and Development Organization, Hyderabad, India. References Bassani, J.L., McClintock, F.A., 1981. Creep Relaxation of Stress around a Crack Tip. International Journal of Solids and Structures 17, 479-492. Belytschko, T., Black, T., 1999. Elastic Crack Growth in Finite Elements with Minimal Remeshing. International Journal for Numerical Methods in Engineering 45, 601-620. CINDAS/USAF CRDA Handbooks Operation, 1995. “Structural Metals Handbook Vol 4” . Code 4103, Purdue University, p 34. Durand, R., Farias, M.M., 2014. A Local Extrapolation Method for Finite Elements. Advances in Engineering Software 67, 1-9. Hsu, T.R., 1986. “The Finite Element Method in Thermodynamics” . Allen and Unwin, Boston. Khoei, A.R., 2015. “Extended Finite Element Method Theory and Applications” . John Wiley and Sons, West Sussex. Kim, D.H., Kim J.H., Sa, J.W., Lee, Y.S., Park, C.K., Moon, S.I., 2008. Stress Rupture Characteristics of Inconel 718 Alloy for Ramjet Combustor. Materials Science and Engineering A 483-484, 262-265. Kumar, M., Ahmad, S., Singh, I.V., Rao, A.V., Kumar, J., Kumar V., 2018b. Experimental and Numerical Studies to Estimate Fatigue Crack Growth Behavior of Ni-Based Super Alloy. Theoretical and Applied Fracture Mechanics, doi.org/10.1016/j.tafmec.2018.07.002. Kumar, M., Bhuwal, A.S., Singh, I.V., Mishra, B.K., Ahmad, S., Rao, A.V., Kumar, V., 2017. Nonlinear Fatigue Crack Growth Simulations using J-integral Decomposition and XFEM. Procedia Engineering 173, 1209-1214. Kumar, M., Singh, I.V., Mishra, B.K., Ahmad, S., Rao, A.V., Kumar, V., 2016. A Modified Theta Projection Model for Creep Behavior of Metals and Alloys. Journal of Materials Engineering and Performance 25, 3985-3992. Kumar, M., Singh, I.V., Mishra, B.K., Ahmad, S., Rao, A.V., Kumar, V., 2018a. Mixed Mode Crack Growth in Elasto-Plastic-Creeping Solids using XFEM. Engineering Fracture Mechanics 199, 489-517. Landes, J.D., Begley, J.A., 1976. A Fracture Mechanics Approach to Creep Crack Growth. Mechanics of Creep Growth, ASTM STP 590, American Society for Testing and Materials, 128-148. Leung, C.P., McDowell, D., Saxena, A., 1988. Consideration of Primary Creep at a Stationary Crack Tip: Implications for the C t Parameter. International Journal of Fracture 36, 275-289. Luycker, E.D., Benson, D.J., Belytschko, T., Bazilevs, Y., Hsu, M.C., 2011. X-FEM in Isogeometric Analysis for Linear Fracture Mechanics. International Journal for Numerical Methods in Engineering 87, 541-565. Miranda, A.C.O., Meggiolaro, M.A., Castro, J.T.P., Martha, L.F., Bittencourt, T.N., 2003. Fatigue Life and Crack Path Predictions in Generic 2D Structural Components. Engineering Fracture Mechanics 70, 1259-1279. Moës, N., Dolbow, J., Belytschko, T., 1999. A Finite Element Method for Crack Growth without Remeshing. International Journal for Numerical Methods in Engineering 46, 131-150. Pant, M., Singh, I.V., Mishra, B.K., 2011. Evaluation of Mixed Mode Stress Intensity Factors for Interface Cracks Using EFGM. Applied Mathematical Modelling 35, 3443-3459. Patil, R.U., Mishra, B.K., Singh, I.V., 2017. A New Multiscale XFEM for the Elastic Properties Evaluation of Heterogeneous Materials. International Journal of Mechanical Sciences 122, 277–287. Penny, R.K., Marriott, D.L., 1995. “Design for Creep” . Chapman and Hall, London. Rao, B.N., Rahman, S., 2003. An Interaction Integral Method for Analysis of Cracks in Orthotropic Functionally Graded Materials. Computational Mechanics 32, 40-51. Shedbale, A.S., Singh, I.V., Mishra, B.K., Sharma, K., 2017. Ductile Failure Modeling and Simulations using Coupled FE-EFG Approach. International Journal of Fracture 203, 183-209. Singh, S.K., Singh, I.V., Mishra, B.K., Bhardwaj, G., Bui, T.Q., 2017. A Simple, Efficient and Accurate Bézier Extraction Based T-Spline XIGA for Crack Simulations. Theoretical and Applied Fracture Mechanics 88, 74-96. Singh, S.K., Singh, I.V., Mishra, B.K., Bhardwaj, G., Singh, S. K., 2018. Analysis of Cracked Plate Using Higher-Order Shear Deformation Theory: Asymptotic Crack-Tip Fields and XIGA Implementation. Computer Methods in Applied Mechanics and Engineering 336, 594-639. Yan, X., 2006. A Boundary Element Modeling of Fatigue Crack Growth in a Plane Elastic Plate. Mechanics Research Communications 33, 470– 481.
Made with FlippingBook Annual report maker