PSI - Issue 14
Rahul Saini et al. / Procedia Structural Integrity 14 (2019) 362–374 R. Saini, S. Saini, R. Lal, and I. V. Singh / Structural Integrity Procedia 00 (2018) 000–000
374
13
Acknowledgments The financial support provided by MHRD, India: Grant No. MHRD-02-23-200-44 in carrying this research work is gratefully acknowledged by Rahul Saini. References Behravan Rad, A., 2015. Thermo-elastic analysis of functionally graded circular plates resting on a gradient hybrid foundation. Appl. Math. Comput. 256, 276–298. doi:10.1016/j.amc.2015.01.026 Fazzolari, F.A., 2016. Modal characteristics of P- and S-FGM plates with temperature-dependent materials in thermal environment. J. Therm. Stress. 39, 854–873. doi:10.1080/01495739.2016.1189772 Khorshidvand, A.R., Jabbari, M., Eslami, M.R., 2012. Thermoelastic buckling analysis of functionally graded circular plates integrated with piezoelectric layers. J. Therm. Stress. 35, 695–717. doi:10.1080/01495739.2012.688666 Kiani, Y., Eslami, M.R., 2014. Thermal postbuckling of imperfect circular functionally graded material plates: examination of Voigt, Mori– Tanaka, and Self-Consistent schemes. J. Press. Vessel Technol. 137, 21201. doi:10.1115/1.4026993 Koizumi, M., 1997. FGM activities in Japan. Compos. Part B Eng. 28, 1–4. doi:10.1016/S1359-8368(96)00016-9 Koizumi, M., 1993. The concept of FGM. Ceram. Trans. Func. Grad. Mater. 34, 3–10. Lal, R., Ahlawat, N., 2015. Axisymmetric vibrations and buckling analysis of functionally graded circular plates via differential transform method. Eur. J. Mech. A/Solids 52, 85–94. doi:10.1016/j.euromechsol.2015.02.004 Malekzadeh, P., Haghighi, M.R.G., Atashi, M.M., 2011. Free vibration analysis of elastically supported functionally raded annular plates subjected to thermal environment. Meccanica 46, 893–913. doi:10.1007/s11012-010-9345-5 Pradhan, K.K., Chakraverty, S., 2015. Static analysis of functionally graded thin rectangular plates with various boundary supports. Arch. Civ. Mech. Eng. 15, 721–734. doi:10.1016/j.acme.2014.09.008 Pradhan, K.K., Chakraverty, S., 2015. Free vibration of functionally graded thin elliptic plates with various edge supports. Struct. Eng. Mech. 53, 337–354. Prakash, T., Ganapathi, M., 2006. Asymmetric flexural vibration and thermoelastic stability of FGM circular plates using finite element method. Compos. Part B Eng. 37, 642–649. doi:10.1016/j.compositesb.2006.03.005 Reddy J N, 2008. Theory and Analysis of Elastic Plates and Shells, CRC Press, London, New York. doi:10.1002/zamm.200890020 Suresh, S., Mortensen, A., 1998. Fundamentals of Functionally Graded Materials. London, U.K. Swaminathan, K., Sangeetha, D.M., 2017. Thermal analysis of FGM plates – A critical review of various modeling techniques and solution methods. Compos. Struct. 160, 43–60. doi:10.1016/j.compstruct.2016.10.047 Wu TY, Wang YY, Liu GR, 2002. Free vibration analysis of circular plates using generalized differential quadrature rule. Comput. Methods Appl. Mech. Engrg. 191, 5365–5380.
Made with FlippingBook Annual report maker