PSI - Issue 13

Milan Uhríčik et al. / Procedia Structural Integrity 13 (2018) 1571 – 1576 Milan Uhríčik / Structural Integrity Procedia 00 (2018) 000 – 000

1576

6

speeds, as in the case of cold deformation, or by a rapid load deformation. The formation of internal damping peaks is thus caused by the transformation of the deformation-induced martensite back to austenite. In this case there was the release of internal energy, which turned out to be the peak of internal damping. Talonen et al., 2004 observed a local maximum of internal damping at about 130 °C. Santos et al. 2010, obtained the peak of the internal damping within the temperature range of 100-150 °C, what they attributed to the presence of α´martensite.

Acknowledgements

This work has been supported by Scientific Grant Agency of Ministry of Slovak Republic and Slovak Academy of Science, No. 1/0683/15.

References

Danilchenko, V., 2016. Ultrafine -Grained Structure of Fe-Ni- C Austenitic Alloy Formed by Phase Hardening. Nanoscale Research Letters, Febr. 2016. Dresslerová, Z., Palček, P., 2014. Temperature Dependence of the Internal Friction Measured at Different Excitation Voltage. Manufacturing technology: journal for science research and production, 287 - 290. Dryzek, E., Sarnek, M., Wróbel, M., 2014. Reverse transformation of deformation - induced martensite in austenitic stainless steel studied by po sitron annihilation. Journal of Materials Science, 8449 - 8458. Hedström, P., 2007. Deformation and Martensitic Phase Transformation in stai n less Steels. Lulea University of Technology, 2007. Jin, Y., Bernacki, M., Rohrer, G., S., Rollett, A., D., Lin, B., Bozzolo, N., 2013. Formation of annealing twins during recrystallization and grain growth in 304L austenitic steel. Sydney: Materials Science Forum, 113 - 116. Lima, A., S., Nascimento, A., M., Abreu, H., F., G., Lima - Neto, P., 2005. Sensitization evaluation of the stainless steel AISI 304L, 316L, 321 and 347. Journal of Materials Science, 139 - 144. Park, J., B., Kim, Y., K., 2003. Biomaterials: Principles and Applications: Metallic Biomaterials. CRC Press Boca Raton 2003. Puškár, A., Golovin, S., A., 1981. Kumulácia poškodenia v procese únavy. Bratislava: VEDA. pp. 263. Rashid, M., W., A., Gakim, M., Rosli, Z., M., Azam, M., A., 2012. Formation of Cr23C6 during the sensitization of AISI 304 st ainless steel and its effect to pitting corrosion. International Journal of Electrochemical Science, 9465 - 9477. Santos, T., F., A., Andrade, M., S., 2010. Internal Friction on AISI 304 Stainless Steels with Low Tensile Deformations at Temperatures between - 50 and 20 °C. Advances in Materials science and Engineering 2010. Solomon, N., Solomon, I., 2010. Deformation induced martensite in AISI 316 stainless steel. Madrid: Revista de Metalurgia, 121 - 128. Soviarová, A., 2015. Vplyv obsahu hliníka na zmenu vnútorného tlmenia v závislosti od teploty v horčíkových zliatinách. University of Žilina 2015. Talonen, J., Hänninen, H., 2004. Damping properties of austenitic stainless steels containing strain - induced martensite. Metallurgical and Materials Transactions A, 2401 - 2406. Zatkalíkova, V., Markovičová, L., Belan, J., Liptáková, T., 2014. Variability of local corrosion attack morphology of AISI 316Ti stainless steel in aggressive chloride environment. Manufacturing technology: journal for science research and production, 493 - 497.

Made with FlippingBook. PDF to flipbook with ease