PSI - Issue 13

Markus Könemann et al. / Procedia Structural Integrity 13 (2018) 914–919 Markus Könemann/ Structural Integrity Procedia 00 (2018) 000–000

919

6

Fig. 6 shows the writing of a tensile impact test on the test material. An oscillating behavior of the force signal is to be recognized, which is typical for dynamic tests, since it comes to an oscillation of the measuring technique. The load cell-sampling rate is 4 MHz. In comparison, the simulation of the test is shown, which shows the course of the measured values well. The impact strength determined is 18 J for the test and 17 J for the simulation. This shows that the material model can be used to analyze the tensile impact tests. Components with the same parameter set can now also be simulated in order to select a corresponding sample from the sample catalog. The values obtained in this way can then be correlated directly with the component behavior. 5. Conclusions and outlook The article presented a new method for characterizing the toughness of thin sheets and thin-walled structures. In summary, it can be stated that:  The triaxiality of the standard sample cannot quite reach the same level as with the Charpy-V-notch sample due to the smaller sheet thickness.  With the presented sample catalogue, it is possible to freely select the triaxiality at a given Lode angle.  The test can be carried out quickly and reproducibly and a stress state dependent material model can describe it. Detailed analyses of different material classes are planned for the future. In particular, the link to the real component is to be put more into focus. Acknowledgements The financial support of the depicted research works through ‘Forschungsvereinigung Stahlanwendung e.V.’ (FOSTA) and “Arbeitsgemeinschaft industrieller Forschungsvereinigungen e.V.” (AIF) is gratefully acknowledged. References Avramovic-Cingara, G., Saleh, C., Jain, M., & Wilkinson, D. (2009). Effect of martensite distribution on damage behaviour in DP600 dual phase steels. Materials Science and Engineering (516), 7-16. Bai, Y., & Wierzbicki, T. (2008). A new model of metal plasticity and fracture with pressure and Lode dependence. International Journal of Plasticity (24), 1071-1096. Bao, Y., & Wierzbicki, t. (2004). On the fracture locus in the equivlent strain and stress triaxiality space. Journal of Mechanical Sciences (46), 81 98. Becker, J. C. (1981). Dualphasenstähle mit erhöhter Festigkeit und Verformbarkeit. Zeitung Werkstofftechnik (12). Bleck, W., & Achenbach, U. (1999). Werkstoffprüfung in Studium und Praxis. Aachen: Mainz. Brinnel, V. (2017). Improved Limit State Definitions for Pressure Vessels by a Scale-bridging Application of Damage Mechanics. Aachen: PhD thesis, RWTH Aachen University. Dahl, W., Anton, W., Belche, P., Degenkolbe, J., Engineer, S., Gleiter, H., Hornbogen, E. (1983). Werkstoffkunde Eisen und Stahl, Teil I: Grundlagen der Festigkeit, der Zähigkeit und des Bruchs Band 1. Düsseldorf: Verlag Stahleisen mbH. He, J., Lian, J., Golisch, G., He, A., Di, Y., & Münstermann, S. (13. 01 2017). Investigation on micromechanism and stress state effects on cleavage fracture of ferritic-pearlitic steel at −196 °C. Materials Science & Engineering A , S. 134-141. Hosten, A. (2013). Numerische Modellierung dynamischer Belastungen von Stählen. Aachen: Shaker. Johnson, G., & Cook, W. (1983). A constitutive model and data for metals subjected to large strains, high strain rates and high temperatures. Proceedings of the 7th International Symposium on Ballistics. Hague. Könemann, M., & Münstermann, S. (02 2017). Entwicklung eines innovativen Bewertungskonzepts zur Zähigkeitsuntersuchung von Feinblechen. 49. Tagung des DVM-Arbeitskreises Bruchmechanik und Bauteilsicherheit , S. 277-286. Lian, J., Sharaf, M., Archie, F., & Münstermann, S. (2012). A hybrid approach for modelling of plasticity and failure behavior of advanced high strength steel sheets. International Journal of Damage Mechanics . Maidenberg, M. (10. 07 2017). New York Times . Abgerufen am 14. 12 2017 von https://www.nytimes.com/2017/07/10/business/takata-airbag honda-death.html Tvergaard, V., & Needleman, A. (1984). Analysis of the cup-cone fracture in a round tensile bar. Acta Metallurgica (32), 157 - 169.

Made with FlippingBook. PDF to flipbook with ease