PSI - Issue 13

Jean-gabriel Sezgin et al. / Procedia Structural Integrity 13 (2018) 1615–1619 Jean-Gabriel Sezgin/ Structural Integrity Procedia 00 (2018) 000 – 000

1619

5

• The contribution of the internal pressure to tensile ductility and fracture morphology being nearly zero, the observed ductility loss and dimple-size reduction could be rather explained by the hydrogen-enhanced localized plasticity (HELP) mechanism. References Birnbaum H. K. and Sofronis P. 1994. “Hydrogen -Enhanced Localized Plasticity — a Mechanism for Hydrogen- Related Fracture.” Materials Science and Engineering: A 176(1):191 – 202. Retrieved (http://www.sciencedirect.com/science/article/pii/092150939490975X). Brass A. M. and Chene J. 1998. “Influence of Deformation on the Hydrogen Behavior in Iron and Nickel Base Alloys: A Review of Exper imental Data.” Mater. Sci. Engng A 242:210 – 21. Coudreuse L. 1992. Fragilisation Par l’hydrogène et Corrosion Sous Contrainte ; Corrosion Sous Contrainte – Phénoménologie et Mécanismes . Ed. D. Des. Gangloff R. P. and Somerday B. P. 2012. Gaseous Hydrogen Embrittlement of Materials in Energy Technologies: Mechanisms, Modelling and Future Developments . Elsevier. Hirth J. P. 1980. “Effects of Hydrogen on the Properties of Iron and Steel.” Metall Trans A 11A(June):861 – 76. Imade M., Iijima T., Fukuyama S., and Yokogawa K. 2008. “Effect of Heat-Treatment on High-Pressure Hydrogen Gas Embrittlement of Austenitic Stainless Steels.” Journal of the Japan Institute of Metals 72(3):139 – 45. Kameda J. and Mcmahon C. J. 1983. “Solute Segregation and Hydrogen -Induced Intergranular Fracture in an Alloy Steel.” Metallurgical Transactions A 14(4):903 – 11. Kanezaki T., Narazaki C., Mine Y. , Matsuoka S., and Murakami Y.. 2008. “Effects of Hydrogen on Fatigue Crack Growth Behavior of Austenitic Stainless Steels.” International Journal of Hydrogen Energy 33(10):2604 – 19. Liu Q. and Atrens A. 2013. “A Critical Review of the Influence of Hydrogen on the Mechanical Properties of Medium - Strength Steels.” Corrosion Reviews 31(3 – 6):85 – 103. Liu Q., Irwanto B., and Atrens A. 2013. “The Influence of Hydrogen on 3.5NiCrMoV Steel Studied Using the Linearly Increasing Stress Test.” Corrosion Science 67:193 – 203. Retrieved (http://dx.doi.org/10.1016/j.corsci.2012.10.019). Liu Q., Irwanto B., and Atrens A . 2014. “Influence of Hydroge n on the Mechanical Properties of Some Medium-Strength Ni-Cr- Mo Steels.” Materials Science and Engineering A 617:200 – 210. Liu Q. et al. 2016. “A Review of the Influence of Hydrogen on the Mechanical Properties of DP, TRIP, and TWIP Advanced High -Strength Steels for Auto Construction.” Corrosion Reviews 34(3):127 – 52. Matsunaga H., Yoshikawa M., Kondo R., Yamabe J., and Matsuoka S . 2015. “Slow Strain Rate Tensile and Fatigue Properties of Cr -Mo and Carbon Steels in a 115 MPa Hydrogen Gas Atmosphere.” International Journal of Hydrogen Energy 40(16):5739 – 48. Retrieved (http://dx.doi.org/10.1016/j.ijhydene.2015.02.098). Matsuo T., Matsuoka S., and Murakami Y. 2010. “Fatigue Crack Growth Properties of Quenched and Tempered Cr -Mo Steel in 0.7 MPa Hydrogen Gas.” in 18th European Conference on Fracture, Dresden, Germany, Proceeding . Matsuo T., Yamabe J., and Matsuoka S . 2014. “Effects of Hydrogen on Tensile Properties and Fracture Surface Morphologies of Type 316L Stainless Steel.” International Journal of Hydrogen Energy 39(7):3542 – 51. Retrieved (http://dx.doi.org/10.1016/j.ijhydene.2013.12.099). Matsuoka S., Matsunaga H., Yamabe J., Hamada S., and Iijima T . 2017. “Various Strength Properties of SCM435 and SNCM439 Low -Alloy Steels in 115 MPa Hydrogen Gas and Proposa l of Design Guideline.” Transactions of the JSME (in Japanese) 83(854):17-00264-17-00264. Retrieved (https://www.jstage.jst.go.jp/article/transjsme/83/854/83_17-00264/_article/-char/ja/). Murakami Y., Matsuoka S., Kondo Y., and Nishimura S. 2012. “Mechanism of Hydrogen Embrittlement and Guide for Fatigue Design.” Yokendo Ltd., Tokyo, Japan . Novak P., Yuan R., Somerday B. P., Sofronis P., and Ritchie R. O . 2010. “A Statistical, Physical -Based, Micro-Mechanical Model of Hydrogen-Induced Intergranular Fracture in Steel.” Journal of the Mechanics and Physics of Solids 58(2):206 – 26. Retrieved (http://dx.doi.org/10.1016/j.jmps.2009.10.005). Ordin, Pm. 1997. Safety Standard for Hydrogen and Hydrogen Systems, L . Pardoen T. and Hutchinson J. W. 2003. “Micromechanics - Based Model for Trends in Toughness of Ductile Metals.” Acta Materialia 51(1):133 – 48. Petch N. J. and Stables P. 1952. “Delayed Fracture of Metals under Static Load.” Nature 169(4307):842 – 43. Pressouyre G. M. 1979. “A Classification of Hydrogen Traps in Steel.” Metallurgical and Materials Transactions A 10(10):1571 – 73. Pressouyre G. M. 1982. “Implications Industrielles de l’hydrogene.” 3e Congres International Hydrogene et Materiaux 12:145 – 51. Ramamurthy S. and Atrens A . 2013. “Stress Corrosion Cracking of High - Strength Steels.” Corrosion Reviews 31(1):1 – 31. Sezgin J. G., Bosch C., Montouchet A., Perrin G., and Wolski K. 2017a. “Modelling and Simulation of Hydrogen Redistribution in a Heterogeneous Alloy d uring the Cooling down to 200 °C.” International Journal of Hydrogen Energy 2:2 – 14. Sezgin J. G., Bosch C., Montouchet A., Perrin G., and Wolski K. 2017b. “Modelling of Hydrogen Induced Pressurization of Internal Cavities.” International Journal of Hydrogen Energy 42(22). Sezgin J. G. and Yamabe J . 2018. “Simulation of the Impact of Internal Pressure on the Integrity of a Hydrogen -Charged Type-316L Stainless Steel during Slow Strain Rate Tensile Test.” International Journal of Hydrogen Energy 43(17):8558 – 68. Retrieved (https://doi.org/10.1016/j.ijhydene.2018.03.125). Troiano A. R. 1960. “The Role of Hydrogen and Other Interstitials in the Mechanical Behavior of Metals.” Trans. ASM 52:54. Tvergaard V. and Hutchinson J. W . 2002. “Two Mechanisms of Ductile Fracture: Void by Void Growth versus Multiple Void Interaction.” International Journal of Solids and Structures 39(13 – 14):3581 – 97. Venezuela J., Liu Q., Zhang M., Zhou Q., and Atrens A . 2015. “The Influence of Hydrogen on the Mechanical and Fracture Properties of Some Martensitic Advanced High Strength Steels Studied Using the Linearly Increasing Stress Test.” Corrosion Science 99:98 – 117. Retrieved (http://dx.doi.org/10.1016/j.corsci.2015.06.038). Venezuela J., Liu Q., Zhang M., Zhou Q., and Atrens A . 2016. “A Review of Hydrogen Embrittlement of Martensitic Advanced High - Strength Steels.” Corrosion Reviews 34(3):153 – 86. Yamabe J., Matsumoto T., Matsuoka S., and Murakami Y . 2012. “A New Mechanism in Hydrogen -Enhanced Fatigue Crack Growth Behavior of a 1900-MPa-Class High- Strength Steel.” International Journal of Fracture 177(2):141 – 62. Yamabe J., Takakuwa O., Matsunaga H., Itoga H., and Matsuoka S . 2017. “Hydrogen Diffusivity and Tensile -Ductility Loss of Solution-Treated Aus tenitic Stainless Steels with External and Internal Hydrogen.” International Journal of Hydrogen Energy 42(18):13289 – 99. Retrieved (http://dx.doi.org/10.1016/j.ijhydene.2017.04.055). Zapffe C. A. and Sims C. E. 1940. “Hydrogen, Flakes and Shatter Cracks.” Met. Alloys, AA00722827 12:145 – 51.

Made with FlippingBook. PDF to flipbook with ease