PSI - Issue 12

ScienceDirect Available online at www.sciencedirect.com Av ilable o line at ww.sciencedire t.com ScienceDirect Structural Integrity Procedia 00 (2016) 000 – 000 Procedia Structu al Integrity 12 (2018) 416–428 Available online at www.sciencedirect.com Structural Integrity Procedia 00 (2018) 000–000 Available online at www.sciencedirect.com Structural Integrity Procedia 00 (2018) 000–000

www.elsevier.com/locate/procedia www.elsevier.com / locate / procedia www.elsevier.com / locate / procedia

2452-3216 © 2016 The Authors. Published by Elsevier B.V. Peer-review under responsibility of the Scientific Committee of PCF 2016. 2452-3216  2018 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/3.0/) Peer-review under responsibility of the Scientific Committee of AIAS 2018 International Conference on Stress Analysis. 10.1016/j.prostr.2018.11.076 ∗ Corresponding author. Tel.: + 39 06 72597136. E-mail address: porziani@ing.uniroma2.it 2210-7843 c 2018 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http: // creativecommons.org / licenses / by-nc-nd / 3.0 / ) Peer-review under responsibility of the Scientific Committee of AIAS 2018 International Conference on Stress Analysis. Optimization in mechanical application is a natural paramount for every designer: through optimization it is pos sible t minimize both costs an failure r sks of mechanical components. When dealing with complex component shapes together with complex loads and constraints configurations, the optimization task can become very challeng ing. The introduction and widespread adoption of numerical simulation in mechanical design furnished valid tools to the designer in charge of optimizing mechanical components: di ff erent shapes can be virtually tested using Finite Element Method (FEM) and optimization techniques based on evolutive algorithms or metamodels. To perform the optimization procedure several numerical models are required to be built, which can become a very time-consuming task, specially dealing with complex shape models. ∗ Corresponding author. Tel.: + 39 06 72597136. E-mail address: porziani@ing.uniroma2.it 2210-7843 c 2018 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http: // creativecommons.org / licenses / by-nc-nd / 3.0 / ) Peer-review under responsibility of the Scientific Committ e of AIAS 2018 Internatio al Conference on Stress Analysis. XV Portuguese Conference on Fracture, PCF 2016, 10-12 February 2016, Paço de Arcos, Portugal Thermo-mechanical modeling of a high pressure turbine blade of an airplane gas turbine engine P. Brandão a , V. Infante b , A.M. Deus c * a Department of Mechanical Engineering, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1, 1049-001 Lisboa, Portugal b IDMEC, Department of Mechanical Engineering, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1, 1049-001 Lisboa, Portugal c CeFEMA, Department of Mechanical Engineering, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1, 1049-001 Lisboa, Portugal Abstract During their operation, modern aircraft engine components are subjected to increasingly demanding operating conditions, especially the high pressure turbine (HPT) blades. Such conditions cause these parts to undergo different types of time-dependent degradation, one of which is creep. A model using the finite element method (FEM) was developed, in order to be able to predict the creep behaviour of HPT blades. Flight data records (FDR) for a specific aircraft, provided by a commercial aviation company, were used to obtain thermal and mechanical data for three different flight cycles. In order to create the 3D model needed for the FEM analysis, a HPT blade scrap was scanned, and its chemical composition and material properties were obtained. The data that was gathered was fed into the FEM model and different simulations were run, first with a simplified 3D rectangular block shape, in order to better establish the model, and then with the real 3D mesh obtained from the blade scrap. The overall expected behaviour in terms of displacement was observed, in particular at the trailing edge of the blade. Therefore such a model can be useful in the goal of predicting turbine blade life, given a set of FDR data. © 2018 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/3.0/) Peer-review under responsibility of the Scientific Committee of AIAS 2018 International Conference on Stress Analysis. AIAS 2018 International Conference on Stress Analysis Automatic shape optimization of structural components with manufacturing constraints Stefano Porziani a, ∗ , Corrado Groth a , Marco Evangelos Biancolini a a University of Rome “Tor Vergata”, Rome 00133, Italy Abstract Among optimization pro edures, mesh morphing gained a relevant position: it proved t be a suitable tool in obtaining weight and stress concentration reduction, without the need to iterate the numerical model generation. Shape modification through mesh morphing can be performed in an automatic fashion adopting two approaches: defining parameters which will describe the modified shape or exploiting results coming from numerical analyses. With this second approach, it is possible to achieve a very high automation grade: stress values retrieved on component surfaces can be successfully employed to drive the shape modification of the component itself. This ‘driven-by-numerical-results’ automatic approach can lead to complex optimized shapes, which can be easily achieved with modern additive manufacturing processes, but not adopting traditional manufacturing processes. In the presen work a method to include manufacturing constraints in a shape optimization workflow is presented and applied to di ff erent structural optimization cases, in order to demonstrate how even manufacturing based on traditional processes can take advantage of automatic shape optimization of structural components. c 2018 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http: // creativecommons.org / licenses / by-nc-nd / 3.0 / ) Peer-review under responsibility of the Scientific Committee of AIAS 2018 International Conference on Stress Analysis. Keywords: FEM; Optimization; Mes Morphing; Biological Growth Method Optimization in mechanical application is a natural paramount for every designer: through optimization it is pos sible to minimize both costs and failure risks of mechanical components. When dealing with complex component shapes together with complex loads and constraints configurations, the optimization task can become very challeng ing. The introduction and widespread adoption of numerical simulation in mechanical design furnished valid tools to the designer in charge of optimizing mechanical components: di ff erent shapes can be virtually tested using Finite Element Method (FEM) and optimization techniques based on evolutive algorithms or metamodels. To perform the optimization procedure several numerical models are required to be built, which can become a very time-consuming task, specially dealing with complex shape models. AIAS 2018 International Conference on Stress Analysis uto atic shape opti ization of structural co ponents ith anufacturing constraints Stefano Porziani a, ∗ , Corrado Groth a , Marco Evangelos Biancolini a a University of Rome “Tor Vergata”, Rome 00133, Italy Abstract Among optimization procedures, mesh morphing gained a relevant position: it proved to be a suitable tool in obtaining weight and stress concentration reduction, without the need to iterate the numerical model generation. Shape modification through mesh morphing can be performed in an automatic fashion adopting tw approaches: defining parameters which will de cribe the mod fied shape or exploiting results coming from numerical analyses. With this second approach, it is possible to achieve a very high automation grade: stress values retrieved on component surfaces can be successfully employed to drive the shape modification of the component itself. This ‘driven-by-numerical-results’ automatic approach can lead to complex optimized shapes, which can be easily achieved with modern additive manufacturing processes, but not adopting traditional manufacturing processes. In the present work a method to include manufacturing constraints in a shape optimization workflow is presented and applied to di ff erent structural optimization cases, in order to demonstrate how even manufacturing based on traditional processes can take advantage of automatic shape optimization of structural components. c 2018 The Authors. Published by Elsevier B.V. is an open access article under the CC BY-NC-ND license (http: // creativecommons.org / licenses / by-nc-nd / 3.0 / ) Peer-review under responsibility of the Scientific Committee of AIAS 2018 International Conference on Stress Analysis. Keywords: FEM; Optimization; Mesh Morphing; Biological Growth Method 1. Introduction © 2016 The Authors. Published by Elsevier B.V. Peer-review under responsibility of the Scientific Committee of PCF 2016. 1. Introduction Keywords: High Pressure Turbine Blade; Creep; Finite Element Method; 3D Model; Simulation. * Corresponding author. Tel.: +351 218419991. E-mail address: amd@tecnico.ulisboa.pt

Made with FlippingBook - Online Brochure Maker