PSI - Issue 10
G. Belokas / Procedia Structural Integrity 10 (2018) 120–128 G. Belokas / Structural Integrity Procedia 00 (2018) 000 – 000
124
5
Table 1. Typical triaxial compression data from Herakleion marl (Tsiambaos (1988)). Sample ΓΣ2 (5 m) Γ 1 (2 m) Γ 1 (3.5 m)
ΓΣ 13 (17 m)
Γ 1 (18 m)
σ 3 (kPa) σ 1 (kPa) s (kPa)
117.7 448.3
156.0 591.5
219.7
62 110
304
95 158
383
110.9 593.5
200.1 884.9
245.3
104 514 309 205
210
427
736.7 375 606 1488 475 506 1383
1044.8
785 1339
283 165
374 218
478 219 358 258 157 248
896 285 332 592 190 174
883 500
352 241
542 342
645 400
498 288
883 456
t (kPa)
Table 1 (continued). Typical triaxial compression data from Herakleion marl (Tsiambaos (1988)). Sample Γ1 (6 m) ΓΣ2 (9 m) ΓΣ 13 (24 m)
Γ 3 (12.5 m)
σ 3 (kPa) σ 1 (kPa) s (kPa) t (kPa)
79 146 265 119.68
258.98
346.29
73.57 141.26 162.85
52 139
222
365 618 997 640.59 1056.54 1339.07 429.68 587.62 750.47 672 819 1004
222 382 631 143 236 366
380 260
658 399
843 496
252 178
364 223
457 362 479 294 310 340
613 391
Table 2. Mohr – Coulomb failure criterion constants for each sample.
Mean
ΓΣ2 (5 m) 40.99
Γ1 (2 m) 22.34
Γ1 (3.5 m)
ΓΣ13 (17 m)
Γ1 (18 m)
Γ1 (6 m) 29.69
ΓΣ2 (9 m) 76.83
ΓΣ13 (24 m)
Γ3 (12.5 m) 201.58 0.34038
Sample
c (kPa)
64.34
21.24
60.41
77.75
48.20
tan φ φ ( ο )
0.59415
0.53191
0.83698
0.64201
0.64099
0.4862
0.64606
0.59134
0.63149
30.42
28.01
39.93
32.70
32.66
25.93
32.86
30.60
32.27
18.78
600
Experimental results
Best estimate
400
Characteristic 1 (FORM) Characteristic 2 (envelope for p>5%) Characteristic 2 (linear regression)
σ 3 (kPa)
200
0
0
200 400 600 800 1000 1200 1400 1600
σ 1 (kPa)
Fig. 3. Statistical evaluation of the experimental results of Table 1.
5. Alternatives for the statistical measures and the characteristic envelope
Alternatively, for the characteristic envelope we can apply a t-student distribution into the y ( x ) estimate (i.e. the predicted σ 1 for given σ 3 , given by Eq.(19)) for a p =5% probability (i.e. t p,n-2 =1.70814) and n -2 dof. Fig.3 shows the characteristic envelope from Eq.(19) for a p =5%, which is non – linear (characteristic 2). By linear regression, this characteristic envelope leads to characteristic values a k =190.36 kPa and b k =2.92550 for Eq.(19) and then c k2 =55.6 kPa and (tan φ ) k2 =0.56287 for the Mohr – Coulomb failure criterion (Fig.3, characteristic 2 – linear regression). Note that this approach does not take into account the error propagation to calculate the uncertainties.
1
n
n
2
2
2
3 a b t m m n
n
1
1
j
(19)
i
2
3
3
3
3
n
2
j
i
1
1
Made with FlippingBook - professional solution for displaying marketing and sales documents online