PSI - Issue 46

J. Bialowas et al. / Procedia Structural Integrity 46 (2023) 49–55 J. Bialowas et al. / Structural Integrity Procedia 00 (2021) 000–000

55

7

Acknowledgements The authors gratefully acknowledge the financial support under the scope of the COMET program within the K2 Center “Integrated Computational Material, Process and Product Engineering (IC-MPPE)” (Project No 859480). This program is supported by the Austrian Federal Ministries for Climate Action, Environment, Energy, Mobility, Innovation and Technology (BMK) and for Digital and Economic Affairs (BMDW), represented by the Austrian research funding association (FFG), and the federal states of Styria, Upper Austria and Tyrol. References Abaqus. Dassault Systèmes. Bäcker V., Klocke F., Wegner H., Timmer A., Grzhibovskis R., Rjasanow S. 2010. Analysis of the deep rolling process on turbine blades using the FEM/BEM-coupling. IOP Conf. Ser.: Mater. Sci. Eng. 10, 12134. Balland P., Tabourot L., Degre F., Moreau V. 2013. An investigation of the mechanics of roller burnishing through finite element simulation and experiments. International Journal of Machine Tools and Manufacture 65, 29–36. Choi K., Pan J. 2009. Simulations of stress distributions in crankshaft sections under fillet rolling and bending fatigue tests. International Journal of Fatigue 31, 544–557. Klocke F., Bäcker V., Timmer A., Wegner H. 2009. Innovative FE-analysis of the roller burnishing process for different geometries. Maierhofer J., Gänser H.-P., Pippan R. 2014. Prozessmodell zum Einbringen von Eigenspannungen durch Festwalzen. Mat.-wiss. u. Werkstofftech 45, 982–989. Majzoobi G.H., Zare Jouneghani F., Khademi E. 2016. Experimental and numerical studies on the effect of deep rolling on bending fretting fatigue resistance of Al7075. Int J Adv Manuf Technol 82, 2137–2148. Meyer K.A., Skrypnyk R., Pletz M. 2021. Efficient 3d finite element modeling of cyclic elasto-plastic rolling contact. Tribology International 161, 107053. Nalla R., Altenberger I., Noster U., Liu G., Scholtes B., Ritchie R. 2003. On the influence of mechanical surface treatments—deep rolling and laser shock peening—on the fatigue behavior of Ti–6Al–4V at ambient and elevated temperatures. Materials Science and Engineering: A 355, 216–230. Perenda J., Trajkovski J., Žerovnik A., Prebil I. 2015. Residual stresses after deep rolling of a torsion bar made from high strength steel. Journal of Materials Processing Technology 218, 89–98. Perenda J., Trajkovski J., Žerovnik A., Prebil I. 2016. Modeling and experimental validation of the surface residual stresses induced by deep rolling and presetting of a torsion bar. Int J Mater Form 9, 435–448. Regazzi D., Cantini S., Cervello S., Foletti S. 2017. Optimization of the cold-rolling process to enhance service life of railway axles. Procedia Structural Integrity 7, 399–406. Regazzi D., Cantini S., Cervello S., Foletti S., Pourheidar A., Beretta S. 2020. Improving fatigue resistance of railway axles by cold rolling: Process optimisation and new experimental evidences. International Journal of Fatigue 137, 105603. Schajer G, Whitehead P 2018. Hole-Drilling Method for Measuring Residual Stresses. Morgan & Claypool Publishers, San Rafael: 188 pp. Zerbst U., Beretta S., Köhler G., Lawton A., Vormwald M., Beier H., Klinger C., Černý I., Rudlin J., Heckel T., Klingbeil D. 2013. Safe life and damage tolerance aspects of railway axles – A review. Engineering Fracture Mechanics 98, 214–271.

Made with FlippingBook flipbook maker