PSI - Issue 39
Keke Tang et al. / Procedia Structural Integrity 39 (2022) 387–392 Author name / Structural Integrity Procedia 00 (2021) 000–000
392
6
Acknowledgements This work was supported by the National Natural Science Foundation of China (NSFC) [11872278]; Science and Technology Commission of Shanghai Municipality (STCSM) [21ZR1467200]. References Wu, D., Liu, L B., Zhang, L G., Wang, W L., Zhou, K C., 2020. Tensile deformation mechanism and micro-void nucleation of Ti-55531 alloy with bimodal microstructure. Journal of Materials Research and Technology, 9(6): 15442-53. Ren, J Q., Wang, Q., Zhang, B B., Yang, D., Lu, X F., Zhang, X B., Zhang, X D., Hu, J Y., 2021. Influence of microstructure on fatigue crack growth behavior of Ti–6Al–3Nb–2Zr–1Mo alloy: Bimodal vs. lamellar structures. Intermetallics, 130: 107058. Zeng, L R., Lei, L M., Yang, J., Luo, X M., Zhang, G P., 2018. Microstructure-Dependent Local Fatigue Cracking Resistance of Bimodal Ti–6Al– 4V Alloys. Advanced Engineering Materials, 20(4): 1700702. Owolabi, G., Okeyoyin, O., Olasumboye, A., Whitworth, H., 2016. A new approach to estimating the fatigue notch factor of Ti-6Al-4V components. International Journal of Fatigue , 2016, 82. Guerchais, R., Morel, F., Saintier, N., 2015. Influence of the microstructure and voids on the high-cycle fatigue strength of 316L stainless steel under multiaxial loading. Fatigue & Fracture of Engineering Materials & Structures, 38(9): 1087-104. Guerchais, R., Morel, F., Saintier, N., 2017. Effect of defect size and shape on the high-cycle fatigue behavior. International Journal, 100: 530-9 Yuan, G J., Wang, R Z., Gong, C Y., Zhang, X C., 2020. Tu S T., Investigations of micro-notch effect on small fatigue crack initiation behaviour in nickel-based alloy GH4169: Experiments and simulations. International Journal of Fatigue, 136: 14. Asim, U B., Siddiq, M A., Kartal, M E., 2019.A CPFEM based study to understand the void growth in high strength dual-phase titanium alloy (Ti 10V-2Fe-3Al). International Journal of Plasticity, 122: 188-211. Huang, Y., 1991. A user-material subroutine incorporating single crystal plasticity in the ABAQUS finite element program. Cambridge: Harvard University. Han, F B., 2016. CPFEM study of nanoindentation and high cycle fatigue behavior for Ti-6Al-4V alloy. Northwestern Polytechnical University, Kapoor, K., Ravi P., Noraas, R., Park, J S., Venkatesh, V., Sangid, M D., 2021. Modeling Ti-6Al-4V using crystal plasticity, calibrated with multi scale experiments, to understand the effect of the orientation and morphology of the alpha and beta phases on time dependent cyclic loading. Journal of the Mechanics and Physics of Solids, 146: 28. Li, X., Xu, D., Yang, R., 2019.Crystal plasticity finite element method investigation of the high temperature deformation consistency in dual-phase titanium alloy. Acta Metallurgica Sinica, 55(07): 928-38. Han, F B., Tang, B., Yan, X., Peng, Y F., Kou, H C., Li, J S., Deng, Y., Feng, Y., 2017. Indentation pileup behavior of Ti-6Al-4V alloy: experiments and nonlocal crystal plasticity finite element simulations. Metallurgical and Materials Transactions A, 48(4): 2051-61.
Made with FlippingBook Ebook Creator