PSI - Issue 39
526 12 Lucia Morales-Rivas et al. / Procedia Structural Integrity 39 (2022) 515–527 Author name / Structural Integrity Procedia 00 (2019) 000–000 component. The quarter elliptical corner crack represents the induced FIB defect assuming that the defect depth is , and the defect length is c , knowing that < . The following formula was introduced as the stress intensity factor solution for the specified geometry in Fig. A .1 as: K I = � σ √ where the variable Q can be calculated making use of the equation: Q = 1+1.464( c ) 1 . 65 And the variable F is computed using the set of formulas as follows : F = [ 1 + 2 ( ) 2 + 3 ( ) 4 ] 1 2 Ø 1 = 1.08 − 0.03 � � 2 = − 0.44 + 0. 1 3 .0 + 6
3 = − 0.5 − 0.25 � � + 14.8 � 1 − � 15 1 = 1 + � 0.08 + 0.4 � � 2 � (1 − Ø) 3 2 = 1 + � 0.08 + 0.15 � � 2 � (1 − Ø) 3 Ø = �� c � 2 2 Ø + 2 Ø � 1 4 = [ � t � � ] 1 2 References
Caballero, F.G., Bhadeshia, H.K.D.H., Mawella, K.J.A., Jones, D.G. and Brown, P., 2002. Very strong low temperature bainite. Materials Science and Technology 18 (3), 279-284. Caballero, F.G., García-Mateo, C., Capdevila, C. and De Andrés, C.G., 2007. Advanced ultrahigh strength bainitic steels. Materials and Manufacturing Processes 22 (4), 502-506. Garcia-Mateo, C., Jimenez, J.A., Yen, H.W., Miller, M.K., Morales-Rivas, L., Kuntz, M., Ringer, S.P., Yang, J.R. and Caballero, F.G., 2015. Low temperature bainitic ferrite: Evidence of carbon super-saturation and tetragonality. Acta MATERIALIA 91 162-173. Morales-Rivas, L., Garcia-Mateo, C., Sourmail, T., Kuntz, M., Rementeria, R. and Caballero, F., 2016. Ductility of Nanostructured Bainite. Metals 6 (12), 302. Müller, I., Rementeria, R., Caballero, F.G., Kuntz, M. and Kerscher, E., 2017. Correlation of Fatigue Limit and Crack Growth Threshold Value to the Nanobainitic Microstructure. Solid State Phenomena 258 314-317. Mueller, I., Rementeria, R., Caballero, F.G., Kuntz, M., Sourmail, T. and Kerscher, E., 2016. A Constitutive Relationship between Fatigue Limit and Microstructure in Nanostructured Bainitic Steels. Materials 9 (831). Caballero, F.G. and Bhadeshia, H.K.D.H., 2004. Very strong bainite. Current Opinion in Solid State and Materials Science 8 (3–4), 251-257. Rementeria, R., Morales-Rivas, L., Kuntz, M., Garcia-Mateo, C., Kerscher, E., Sourmail, T. and Caballero, F.G., 2015. On the role of microstructure in governing the fatigue behaviour of nanostructured bainitic steels. Materials Science and Engineering: A 630 71-77. Kumar, A. and Singh, A., 2021. Mechanical properties of nanostructured bainitic steels. Materialia 15 101034. Kaynak, C., ankara, A. and Baker, T.J., 1996. A comparison of short and long fatigue crack growth in steel. International Journal of Fatigue 18 (1), 17-23. Bu, R. and Stephens, R.I., 1986. Comparison of short and long fatigue crack growth in 7075-T6 aluminum. Fatigue & Fracture of Engineering Materials & Structures 9 (1), 35-48. Kitagawa, H. and Takahashi, S., 1976. Applicability of fracture mechanics to very small cracks or the cracks in the early stage . In Proc of 2nd int conf mech behav mater, ASM: Boston. Cleveland (OH),
Made with FlippingBook Ebook Creator