PSI - Issue 39

D.M. Neto et al. / Procedia Structural Integrity 39 (2022) 403–408 Author name / Structural Integrity Procedia 00 (2019) 000–000

408

6

Borges, M.F., Neto, D.M., Antunes, F.V., 2020. Numerical simulation of fatigue crack growth based on accumulated plastic strain. Theoretical and Applied Fracture Mechanics 108, 102676 Borges, M.F., Neto, D.M., Antunes, F.V., 2020. Revisiting Classical Issues of Fatigue Crack Growth Using a Non-Linear Approach. Materials, 13, 5544. Borrego, L.F.P., 2002. Propagação de fendas de fadiga a amplitude de carga variável em ligas de alumínio AIMgSi. University of Coimbra, PhD Thesis. Christensen, R.H., 1959. Fatigue crack, fatigue damage and their detection, Metal fatigue. New York: MacGraw-Hill. Elber, W., 1970. Fatigue crack closure under cyclic tension. Engng Fracture Mechanics 2, 37-45. Ferreira, F.F., Neto, D.M., Jesus, J.S., Prates, P.A., Antunes, F.V., 2020. Numerical Prediction of the Fatigue Crack Growth Rate in SLM Ti-6Al 4V Based on Crack Tip Plastic Strain. Metals 10, 1133. Jones, R.E., 1973. Fatigue crack growth retardation after single-cycle peak overload in Ti–6Al–4V titanium alloy. Eng. Fract. Mech. 5, 585–604. Menezes, L.F., Teodosiu, C., 2000. Three-dimensional numerical simulation of the deep-drawing process using solid finite elements. J. Mater. Process. Technol. 97, 100–106. Neto, D.M., Borges, M.F., Antunes, F.V., 2021. Mechanisms of fatigue crack growth in Ti-6Al-4V alloy subjected to single overloads. Theoretical and Applied Fracture Mechanics 114, 103024. Schijve, J., Broek, D., 1962. The result of a test program based on a gust spectrum with variable amplitude loading, Aircraft Eng. 34, 314–316. Suresh, S., 1983. Micromechanisms of fatigue crack growth retardation following overloads, Eng. Fract. Mech. 18, 577–593.

Made with FlippingBook Ebook Creator