PSI - Issue 39

Jesús Toribio et al. / Procedia Structural Integrity 39 (2022) 479–483 Author name / Procedia Structural Integrity 00 (2021) 000–000

483

5

1.0

0.8

0.4 (da/dN)/(da/dN) 0 0.6

l´ = 25 mm l´ = 50 mm l´ = 75 µ m

0.2

∆ K = 18.75 MPam 1/2

0.0

15

30

45

α (º)

(a)

1.0

0.8

0.4 (da/dN)/(da/dN) 0 0.6

l´ = 25 mm l´ = 50 mm l´ = 75 µ m

0.2

∆ K = 25 MPam 1/2

0.0

15

30

45

α (º)

(b)

1.0

0.8

0.4 (da/dN)/(da/dN) 0 0.6

l´ = 25 µ m l´ = 50 µ m l´ = 75 µ m

0.2

∆ K = 31.25 MPam 1/2

0.0

15

30

45

α (º)

(c)

Fig. 4. Retardation factor for the bifurcated crack: (a) Δ K = 18.75 MPam 1/2 ; (b) Δ K = 25 MPam 1/2 ; (c) Δ K = 31.25 MPam 1/2 .

References Kitagawa, H., Yuuki, R., Ohira, T., 1975. Crack-morphological aspects in fracture mechanics. Engineering Fracture Mechanics 7, 515–529. Meggiolaro, M.A., Miranda, A.C.O., Castro, J.T.P., Martha, L.F., 2005. Crack retardation equations for the propagation of branched fatigue cracks. International Journal of Fatigue 27, 1398–1407. Pärletun, L.G., 1979. Determination of the growth of branched cracks by numerical methods. Engineering Fracture Mechanics 11, 343–358. Toribio, J., González, B., Matos, J.C., 2015. Analysis of fatigue crack paths in cold drawn pearlitic steel. Materials 8, 7439–7446. Toribio, J., González, B., Matos, J.C., 2017. Initiation and propagation of fatigue cracks in cold-drawn pearlitic steel wires. Theoretical and Applied Fracture Mechanics 92, 410–419.

Made with FlippingBook Ebook Creator