PSI - Issue 39

Available online at www.sciencedirect.com Available online at www.sciencedirect.com ScienceDirect Structural Integrity Procedia 00 (2021) 000–000

www.elsevier.com/locate/procedia

ScienceDirect

Procedia Structural Integrity 39 (2022) 379–386

© 2021 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (https://creativecommons.org/licenses/by-nc-nd/4.0) Peer-review under responsibility of CP 2021 – Guest Editors Abstract During the last decades, it has been shown how additive manufacturing is becoming a cost-efficient alternative to produce customized parts or prototyping with traditional manufacturing processes. However, the integrity assessment of 3D printing technology parts is still challenging due to the huge number of parameters involved during the process along with the lack of industry standards. Therefore, further investigations are required to optimize the in-service behaviour of additive manufacturing parts. The objective of this work is to analyse the failure of components made from additive manufacturing under three-point bending tests in terms of crack morphology and strength. Specimens were made by a biopolymer (polylactic acid, PLA) via fused deposition modelling with different infill core densities. Next, three-point bending tests were carried out at a low strain rate under monotonic loading. In addition, three-dimensional digital image correlation was applied during tests in order to track the exterior full-field displacement and strain and output crack trajectories. The results are analysed in terms of fracture morphology and flexural strength of the post-mortem specimens, and they show the high impact of process parameters in the mechanical behaviour and failure of components made from additive manufacturing. © 2021 The Authors. Published by ELSEVIER B.V. This is an open access article under the CC BY-NC-ND license (https://creativecommons.org/licenses/by-nc-nd/4.0) Peer-review under responsibility of CP 2021 – Guest Editors Keywords: additive manufacturing; biopolymer; fracture This i 7th International Conference on Crack Paths Crack morphology in lattice-core specimens made of biopolymer via fused deposition modelling Mario Álvarez-Blanco a, *, Adrián Arias-Blanco a , Diego Infante-García a , Miguel Marco a , Eugenio Giner b a Department of Mechanical Engineering, Universidad Carlos III de Madrid, Avda. De la Universidad 30, 28911, Leganés, Madrid, Spain b Instituto Universitario de Ingeniería Mecánica y Biomecánica (I2MB), Department of Mechanical Engineering and Materials, Universitat Politècnica de València, Camino de Vera, 46022 Valencia, Spain a, a a a Eugenio Gi

* Corresponding author. Tel.: +34-91-624-8873. E-mail address: marioab@pa.uc3m.es

2452-3216 © 2021 The Authors. Published by ELSEVIER B.V. This is an open access article under the CC BY-NC-ND license (https://creativecommons.org/licenses/by-nc-nd/4.0) Peer-review under responsibility of CP 2021 – Guest Editors

2452-3216 © 2021 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (https://creativecommons.org/licenses/by-nc-nd/4.0) Peer-review under responsibility of CP 2021 – Guest Editors 10.1016/j.prostr.2022.03.106

Made with FlippingBook Ebook Creator