PSI- Issue 9
Riccardo Fincato et al. / Procedia Structural Integrity 9 (2018) 136–150 Author name / Structural Integrity Procedia 00 (2018) 000 – 000
149
14
131, 21002. https://doi.org/10.1115/1.3078390 Bai, Y., Wierzbicki, T., 2010. Application of extended Mohr – Coulomb criterion to ductile fracture. Int. J. Fract. 161, 1 – 20. https://doi.org/10.1007/s10704-009-9422-8 Bao, Y., Treitler, R., 2004. Ductile crack formation on notched Al2024-T351 bars under compression – tension loading. Mater. Sci. Eng. A 384, 385 – 394. https://doi.org/10.1016/j.msea.2004.06.056 Bao, Y., Wierzbicki, T., 2004. On fracture locus in the equivalent strain and stress triaxiality space. Int. J. Mech. Sci. 46, 81 – 98. https://doi.org/10.1016/j.ijmecsci.2004.02.006 Brünig, M., Gerke, S., Hagenbrock, V., 2013. Micro-mechanical studies on the effect of the stress triaxiality and the Lode parameter on ductile damage. Int. J. Plast. 50, 49 – 65. https://doi.org/10.1016/j.ijplas.2013.03.012 Chaboche, J.L., 1986. Time-independent constitutive theories for cyclic plasticity. Int. J. Plast. 2, 149 – 188. https://doi.org/10.1016/0749 6419(86)90010-0 Cortese, L., Nalli, F., Rossi, M., 2016. A nonlinear model for ductile damage accumulation under multiaxial non-proportional loading conditions. Int. J. Plast. 85, 77 – 92. https://doi.org/10.1016/j.ijplas.2016.07.003 De Freitas, M., Reis, L., Li, B., 2006. Comparative study on biaxial low-cycle fatigue behaviour of three structural steels. Fatigue Fract. Eng. Mater. Struct. 29, 992 – 999. https://doi.org/10.1111/j.1460-2695.2006.01061.x Faleskog, J., Barsoum, I., 2013. Tension – torsion fracture experiments — Part I: Experiments and a procedure to evaluate the equivalent plastic strain. Int. J. Solids Struct. 50, 4241 – 4257. https://doi.org/10.1016/j.ijsolstr.2013.08.029 Fincato, R., Tsutsumi, S., 2017a. A return mapping algorithm for elastoplastic and ductile damage constitutive equations using the subloading surface method. Int. J. Numer. Methods Eng. https://doi.org/10.1002/nme.5718 Fincato, R., Tsutsumi, S., 2017b. Numerical study of a welded plate instability using the subloading surface model. Mar. Struct. 55. https://doi.org/10.1016/j.marstruc.2017.05.001 Fincato, R., Tsutsumi, S., 2017c. Ductile Damage Evolution under Non-Proportional Loading. J. Japan Soc. Civ. Eng. Ser. A2 (Applied Mech. 73, I_355-I_361. https://doi.org/10.2208/jscejam.73.I_355 Gao, S., Usami, T., Ge, H., 1998. Ductility Evaluation of Steel Bridge Piers with Pipe Sections. J. Eng. Mech. 124, 260 – 267. https://doi.org/10.1061/(ASCE)0733-9399(1998)124:3(260) Gao, X., Zhang, T., Zhou, J., Graham, S.M., Hayden, M., Roe, C., 2011. On stress-state dependent plasticity modeling: Significance of the hydrostatic stress, the third invariant of stress deviator and the non-associated flow rule. Int. J. Plast. 27, 217 – 231. https://doi.org/10.1016/j.ijplas.2010.05.004 Goto, Y., Kumar, G.P., Kawanishi, N., 2010. Nonlinear Finite-Element Analysis for Hysteretic Behavior of Thin-Walled Circular Steel Columns with In-Filled Concrete. J. Struct. Eng. 136, 1413 – 1422. https://doi.org/10.1061/(ASCE)ST.1943-541X.0000240 Gurson, A.L., 1977. Continuum Theory of Ductile Rupture by Void Nucleation and Growth: Part I — Yield Criteria and Flow Rules for Porous Ductile Media. J. Eng. Mater. Technol. 99, 2. https://doi.org/10.1115/1.3443401 Hashiguchi, K., 2009. Elastoplasticity theory, in: Lecture Notes in Applied and Computational Mechanics. pp. 1 – 406. https://doi.org/10.1007/978-3-642-00273-1_1 Hashiguchi, K., 1989. Subloading surface model in unconventional plasticity. Int. J. Solids Struct. 25, 917 – 945. https://doi.org/10.1016/0020 7683(89)90038-3 Hashiguchi, K., Tsutsumi, S., 2001. Elastoplastic constitutive equation with tangential stress rate effect. Int. J. Plast. 17, 117 – 145. https://doi.org/10.1016/S0749-6419(00)00021-8 Hashiguchi, K., Tsutsumi, S., 1993. Fundamental requirements and formulation of elastoplastic constitutive equations with tangential plasticity. Int. J. Plast. 9, 525 – 549. https://doi.org/10.1016/0749-6419(93)90018-L Hashiguchi, K., Yoshimaru, T., 1995. A generalized formulation of the concept of nonhardening region. Int. J. Plast. 11, 347 – 365. https://doi.org/10.1016/S0749-6419(95)00003-8 Kachanov, L.M., 1958. Time of the rupture process under creep conditions. Izv Akad Nauk S S R Otd Tech Nauk 8, 26 – 31. https://doi.org/citeulike-article-id:5466815 Lemaitre, J., 1985. Coupled elasto-plasticity and damage constitutive equations. Comput. Methods Appl. Mech. Eng. 51, 31 – 49. https://doi.org/10.1016/0045-7825(85)90026-X Momii, H., Tsutsumi, S., Fincato, R., 2015. Cyclic and Tangential Plasticity Effects for the Buckling Behavior of a Thin Wall Pier under Multiaxial and Non-proportional Loading Conditions. Trans. JWRI 44. Nishikawa K., Yamamoto S., Natori T., Terao K., Yasunami H., Terada M., 1998. Retrofitting for seismic upgrading of steel bridge columns. Eng. Struct. 20, 540 – 551. https://doi.org/10.1016/S0141-0296(97)00025-4 Papasidero, J., Doquet, V., Mohr, D., 2015. Ductile fracture of aluminum 2024-T351 under proportional and non-proportional multi-axial
Made with FlippingBook - professional solution for displaying marketing and sales documents online