PSI- Issue 9
Riccardo Fincato et al. / Procedia Structural Integrity 9 (2018) 126–135 Author name / Structural Integrity Procedia 00 (2018) 000 – 000
10
135
Bridgman, P.W., 1952. Studies in large plastic flow and fracture: with special emphasis on the effects of hydrostatic pressure. Harvard University Press, Cambridge, MA. Clausing, D.P., 1970. Effect of plastic strain state on ductility and toughness. Int. J. Fract. Mech. 6. https://doi.org/10.1007/BF00183662 Cortese, L., Nalli, F., Rossi, M., 2016. A nonlinear model for ductile damage accumulation under multiaxial non-proportional loading conditions. Int. J. Plast. 85, 77 – 92. https://doi.org/10.1016/j.ijplas.2016.07.003 de Souza Neto, E.A., Peric, D., Owen, D.R.J., 2008. Computational Methods for Plasticity, Computational methods for plasticity-theory and applications. https://doi.org/10.1002/9780470694626 Fincato, R., Tsutsumi, S., 2017a. Effect of the stress triaxiality and Lode angle on the ductile damage evolution. Q. J. Japan Weld. Soc. 35, 185s – 189s. Fincato, R., Tsutsumi, S., 2017b. A return mapping algorithm for elastoplastic and ductile damage constitutive equations using the subloading surface method. Int. J. Numer. Methods Eng. https://doi.org/10.1002/nme.5718 Fincato, R., Tsutsumi, S., 2017c. Numerical study of a welded plate instability using the subloading surface model. Mar. Struct. 55, 104 – 120. https://doi.org/10.1016/j.marstruc.2017.05.001 Fincato, R., Tsutsumi, S., 2017d. Closest-point projection method for the extended subloading surface model. Acta Mech. 228(12), 4213 – 4233. https://doi.org/10.1007/s00707-017-1926-0 Fincato, R., Tsutsumi, S., 2017e. Ductile Damage Evolution under Non-Proportional Loading. J. Japan Soc. Civ. Eng. Ser. A2 (Applied Mech. 73, I_355-I_361. https://doi.org/10.2208/jscejam.73.I_355 Gurson, A.L., 1977. Continuum Theory of Ductile Rupture by Void Nucleation and Growth: Part I — Yield Criteria and Flow Rules for Porous Ductile Media. J. Eng. Mater. Technol. 99, 2. https://doi.org/10.1115/1.3443401 Hashiguchi, K., 2009. Elastoplasticity theory, in: Lecture Notes in Applied and Computational Mechanics. pp. 1 – 406. https://doi.org/10.1007/978-3-642-00273-1_1 Hashiguchi, K., 1994. On the loading criterion. Int. J. Plast. 10, 871 – 878. https://doi.org/10.1016/0749-6419(94)90018-3 Hashiguchi, K., Tsutsumi, S., 1993. Fundamental requirements and formulation of elastoplastic constitutive equations with tangential plasticity. Int. J. Plast. 9, 525 – 549. https://doi.org/10.1016/0749-6419(93)90018-L Hashiguchi, K., Ueno, M., Ozaki, T., 2012. Elastoplastic model of metals with smooth elastic – plastic transition. Acta Mech. 223, 985 – 1013. https://doi.org/10.1007/s00707-012-0615-2 Kachanov, L.M., 1958. Time of the rupture process under creep conditions. Izv Akad Nauk S S R Otd Tech Nauk 8, 26 – 31. https://doi.org/citeulike-article-id:5466815 Lemaitre, J., 1985a. A Continuous Damage Mechanics Model for Ductile Fracture. J. Eng. Mater. Technol. 107, 83. https://doi.org/10.1115/1.3225775 Lemaitre, J., 1985b. Coupled elasto-plasticity and damage constitutive equations. Comput. Methods Appl. Mech. Eng. 51, 31 – 49. https://doi.org/10.1016/0045-7825(85)90026-X Li, W., Liao, F., Zhou, T., Askes, H., 2016. Ductile fracture of Q460 steel: Effects of stress triaxiality and Lode angle. J. Constr. Steel Res. 123, 1 – 17. https://doi.org/10.1016/j.jcsr.2016.04.018 Papasidero, J., Doquet, V., Mohr, D., 2015. Ductile fracture of aluminum 2024-T351 under proportional and non-proportional multi-axial loading: Bao – Wierzbicki results revisited. Int. J. Solids Struct. 69 – 70, 459 – 474. https://doi.org/10.1016/j.ijsolstr.2015.05.006 Rousselier, G., 1987. Ductile fracture models and their potential in local approach of fracture. Nucl. Eng. Des. 105, 97 – 111. https://doi.org/10.1016/0029-5493(87)90234-2 Tsutsumi, S., Momii, H., Fincato, R., 2016. Influence of tangential plasticity for elastoplastic behavior of a thin wall steel bridge pier under lateral bidirectional load paths. J. Struct. Eng. A 62A, 72 – 83. https://doi.org/10.11532/structcivil.62A.72 Tsutsumi, S., Toyosada, M., Dunne, F., 2010. Phenomenological cyclic plasticity model for high cycle fatigue, in: Procedia Engineering. pp. 139 – 146. https://doi.org/10.1016/j.proeng.2010.03.015 Tsutsumi, S., Toyosada, M., Hashiguchi, K., 2006. Extended Subloading Surface Model Incorporating Elastic Boundary Concept. J. Appl. Mech. 9, 455 – 462. https://doi.org/10.2208/journalam.9.455 Wierzbicki, T., Xue, L., 2005. On the effect of the third invariant of the stress deviator on ductile fracture. Cambridge, MA. Wilkins, M.L., Streit, R.D., Reaugh, J.E., 1980. Cumulative-strain-damage model of ductile fracture: simulation and prediction of engineering fracture tests. Livermore, CA. https://doi.org/10.2172/6628920 Zhang, K.S., Bai, J.B., François, D., 2001. Numerical analysis of the influence of the Lode parameter on void growth. Int. J. Solids Struct. 38, 5847 – 5856. https://doi.org/10.1016/S0020-7683(00)00391-7
Made with FlippingBook - professional solution for displaying marketing and sales documents online