PSI - Issue 8
N. Di Domenico et al. / Procedia Structural Integrity 8 (2018) 422–432 N. Di Domenico et al. / Structural Integrity Procedia 00 (2017) 000–000
431
10
water
air
1 , 000
30
800
600
20
| P ( f ) |
| P ( f ) |
400
10
200
0
500 1 , 000 1 , 500 2 , 000 2 , 500 3 , 000 3 , 500 4 , 000
0 1 , 000 2 , 000 3 , 000 4 , 000 5 , 000 6 , 000 7 , 000 8 , 000
f(Hz)
f(Hz)
Fig. 7: Predicted vs measured frequencies
Table 2: Natural frequencies for the Hydrofoil submerged in air or water
Mode 1
Mode 2
Mode 3
Mode 4
Mode 5
Mode 6
Air
1133.8 Hz 891.9 Hz
1587.1 Hz 1118.8 Hz
3660.9 Hz 1619.6 Hz
3917.7 Hz 2902.7 Hz
5936.6 Hz
6789.6 Hz
Water
-
-
embedding them within Fluent R using the mesh morphing Add On RBF Morph TM . No data exchange is required between solvers beyond this point since the CFD numerical grid becomes implicitly elastic. This features translates in a more robust but also faster workflow that, compared to the 2-way method, can be up to 12 times faster. The proposed workflow was validated with respect to a literature problem, a NACA0012 hydrofoil submerged in water, obtaining a very good agreement with experimental data being able to accurately catch resonances in the lock-in and lock-o ff speed range. The FSI transient solver was moreover employed to compute the hydrofoil natural modes in water, highlighting the dampening behavior of the water and furtherly validating the lock-in frequency. Andrejasˇicˇ, M., Erzˇen, D., Costa, E., Porziani, S., Biancolini, M., Groth, C., 2016. A mesh morphing based FSI method used in aeronautical optimization applications, in: ECCOMAS Congress 2016 - Proceedings of the 7th European Congress on Computational Methods in Applied Sciences and Engineering. Ausoni, P., 2009. Turbulent vortex shedding from a blunt trailing edge hydrofoil. Ph.D. thesis. STI. Lausanne. doi:10.5075 / epfl-thesis-4475. Ausoni, P., Zobeiri, A., Avellan, F., Farhat, M., 2012. The E ff ects of a Tripped Turbulent Boundary Layer on Vortex Shedding from a Blunt Trailing Edge Hydrofoil. Journal of Fluids Engineering 134, 051207. URL: http://fluidsengineering.asmedigitalcollection.asme.org/article.aspx?articleid=1440561 , doi:10.1115 / 1.4006700. Beckert, A., Wendland, H., 2001. Multivariate interpolation for fluid-structure-interaction problems using radial basis functions. Aerospace Science and Technology 5, 125–134. doi:10.1016 / S1270-9638(00)01087-7. Benra, F.K., Dohmen, H.J., Pei, J., Schuster, S., Wan, B., 2011. A comparison of one-way and two-way coupling methods for numerical analysis of fluid-structure interactions. Journal of Applied Mathematics 2011. doi:10.1155 / 2011 / 853560. Biancolini, M., Cella, U., 2010. An advanced rbf morph application: Coupled cfd-csm aeroelastic analysis of a full aircraft model and comparison to experimental data, in: Proceedings of the 8th MIRA International Vehicle Aerodynamics Conference, pp. 13–14. Biancolini, M., Cella, U., Groth, C., Genta, M., 2016. Static Aeroelastic Analysis of an Aircraft Wind-Tunnel Model by Means of Modal RBF Mesh Updating. Journal of Aerospace Engineering 29. doi:10.1061 / (ASCE)AS.1943-5525.0000627. Biancolini, M., Groth, C., 2014. An e ffi cient approach to simulating ice accretion on 2d and 3d airfoils, in: Advanced Aero Concepts, Design and Operations. Biancolini, M., Viola, I., Riotte, M., 2014. Sails trim optimisation using CFD and RBF mesh morphing. Computers & Fluids 93, 46–60. URL: http://linkinghub.elsevier.com/retrieve/pii/S0045793014000140 , doi:10.1016 / j.compfluid.2014.01.007. Biancolini, M.E., 2010. Mesh morphing accelerates design optimization. ANSYS Advantage 4. Biancolini, M.E., 2012. Mesh Morphing and Smoothing by Means of Radial Basis Functions (RBF), in: Handbook of Research on Computational Science and Engineering. IGI Global. volume I, pp. 347–380. doi:10.4018 / 978-1-61350-116-0.ch015. Buhmann, M.D., 2000. Radial basis functions. Acta Numerica 2000 9, S0962492900000015. doi:10.1017 / S0962492900000015. References
Made with FlippingBook Digital Proposal Maker