PSI - Issue 75
27
Fabrice Deleau et al. / Procedia Structural Integrity 75 (2025) 392–418 Emmanuel Persent, Deleau Fabrice, Guillaume Coudouel, Guillaume Perrin/ Structural Integrity Procedia (2025)
418
The proposed fatigue calculation methodology bridges the gap between overly conservative and insufficient industry standards, offering a balanced and realistic approach. The fatigue life prediction can be more accurate because our methodology considers the real elastic-plastic material law, the effect of preload, and a more precise correction (Gerber type) of the stress range according to the mean stress. Improvements should be investigated to better specify the effect of non-proportional loading. Our sensor diagnostics will effectively demonstrate the health state of prototypes. One of the technologies used could be designed for future implementation in industrial monitoring. This improvement, along with other enhancements made to this connection, ensures higher load capacities and superior performance under extreme dynamic conditions. References API 16F. (2022, Nov.). Specification for Marine Drilling (Second edition). API 17G. (2019). Design and Manufacture of Subsea Well (Third edition). Austin et al. (1965). Low endurance fatigue strength of thick walled cylinders, development of a testing machine and preliminary results. Pro. Inst. I.M.E. Pro. Inst. I.M.E. , 43-62. Bassim et al. . (1994). Detection of the onset of fatigue crack growth in rail steels using acoustic emission. Engineering Fracture Mechanics , 207-214. Budynas et al. (2014). Mechanical engineering design, tenth edition. McGraw-Hill Education. Catty, J. (2024). Traité de microsismologie ou traité sur une approche quantitative du contrôle par Emission Acoustique. DNV GL RP C203. (2020). Fatigue design of offshore steel structures. Dowling et al. (2007). Mechanical behavior of materials: engineering methods for deformation, fracture, and fatigue. 5th ed. Pearson. Dumousseau et al. (1979). Experimental study of Acoustic Emission monitoring of crack propagation in offshore steel tubular joint. OTC-3425-MS . Dunegan et al. (1972). Factors affecting Acoustic Emission response from Materials. Gaur. (2016). Fatigue and corrosion-fatigue in Cr-Mo steel in biaxial tension. Doctoral dissertation, Université Paris Saclay (COmUE) . Lemaitre et al. (2020). Mécanique des matériaux solides, 3ème éd. Dunod. Lu. (2002). Fatigue des alliages ferreux. Définitions et diagrammes. . Génie mécanique, no BM5042 . Techniques de l'ingénieur. . Manin et al. (2010). Détermination des éléments de machines. Dimensionnement, liaisons, conception intégrée. Génie Mécanique (niveau B). Collection Technosup, Ellipses Editions. Roget, J. (1988). L'Emission Acoustique - Essais non Destructifs, mise en oeuvre et applications. Sines. (1981). Fatigue criteria under combined stresses or strains. Transactions. ASME. Journal of Engineering Material Technology , p. 82-90. Stawaisz et al. (2014). API 17G Specification for Subsea Well Intervention Equipment. Offshore Technology Conference , OTC-25402-MS. Stephens et al. . (2000). Metal fatigue in engineering. John Wiley & Sons. Waldley et al. (1984). Acoustic Emission: Establishing the Fundamentals. Journal of research of the National Bureau of Standards , Vol. 89, No.1.
Made with FlippingBook flipbook maker