PSI - Issue 75
Xiru Wang et al. / Procedia Structural Integrity 75 (2025) 85–93 Wang / Structural Integrity Procedia 00 (2025) 000 – 000
92 8
References
Barsoum, Z. and Jonsson, B. (2011) ‘Influence of weld quality on the fatigue strength in seam welds’, Engineering Failure Analysis , 18(3), pp. 971 – 979. doi: 10.1016/J.ENGFAILANAL.2010.12.001. Baumgartner, J. et al. (2022) ‘An effective stress approach for the fatigue assessment of welded joints considering the influence of materials strength’, in IIW Annual Assembly 2022, IIW Document XIII-2945-2022 . Tokyo. Baumgartner, J., Bruder, T. and Hanselka, H. (2012) ‘Fatigue strength of laser beam welded automotive components made of thin steel sheets considering size effects’, International Journal of Fatigue , 34(1), pp. 65 – 75. doi: 10.1016/J.IJFATIGUE.2011.01.022. Baumgartner, J., Schubnell, J. and Augustine, M. G. (2025) ‘The, Processing of point clouds from 3D scans of welded joints fo r Reliable, weld detection and weld quality analysis as input for a fatigue assessment’, in Fatigue Design 2025 . Senlis, France. DIN Deutsches Institut für Normung e.V. (2023) Deutsche Fassung EN ISO 5817:2023: Schweißen – Schmelzschweißverbindungen an Stahl, Nickel, Titan und deren Legierungen (ohne Strahlschweißen) – Bewertungsgruppen von Unregelmäßigkeiten . Fricke, W., Gao, L. and Paetzold, H. (2017) ‘Fatigue assessment of local stresses at fillet welds around plate corners’, Elsevier , 101, pp. 169 – 176. doi: 10.1016/J.IJFATIGUE.2017.01.011. Hobbacher, A. F. and Baumgartner, J. (2024) Recommendations for Fatigue Design of Welded Joints and Components . 3th illust. Springer. Hobbacher, A. and Kassner, M. (2012) ‘On relation between fatigue properties of welded joints, quality criteria and groups in Iso 5817’, Welding in the World , 56(11 – 12), pp. 153 – 169. doi: 10.1007/BF03321405/METRICS. Hultgren, G. and Barsoum, Z. (2020) ‘Fatigue assessment in welded joints based on geometrical variations measured by laser scanning’, Welding in the World , 64(11), pp. 1825 – 1831. doi: 10.1007/s40194-020-00962-8. Kazhdan, M., Bolitho, M. and Hoppe, H. (2006) ‘Poisson surface reconstruction’, in Proceedings of the fourth Eurographics symposium on Geometry processing . Kiyak, Y., Madia, M. and Zerbst, U. (2016) ‘Extended parametric equations for weld toe stress concentration factors and throu gh-thickness stress distributions in butt- welded plates subject to tensile and bending loading’, Welding in the World 2016 60:6 , 60(6), pp. 1247 – 1259. doi: 10.1007/S40194-016-0377-X. Lawrence, F. V. et al. (1978) ‘Estimating the fatigue crack initiation life of welds’, in Fatigue Testing of Weldments . Hoeppner,. West Conshohocken, PA: ASTM International, pp. 134 – 158. doi: https://doi.org/10.1520/STP33393S. Lawrence, F. V, Ho, N. J. and Mazumdar, P. K. (1981) ‘Predicting the Fatigue Resistance of Welds’, Annual Review of Materials Science , 11(1), pp. 401 – 425. doi: 10.1146/annurev.ms.11.080181.002153. Lieurade, H. P., Huther, I. and Lefebvre, F. (2008) ‘Effect of Weld Quality and Postweld Improvement Techniques on the Fatigu e Resistance of Extra High Strength Steels’, Welding in the World , 52(7 – 8), pp. 106 – 115. Mesh generation with CALFEM — CALFEM for Python 3.6.8 documentation (no date). Available at: https://calfem-for python.readthedocs.io/en/latest/calfem_mesh_guide.html (Accessed: 24 April 2025). Ning Nguyen, T. and Wahab, M. A. (1995) ‘A theroretical study of the effect of geometry parameters on the fatigue crack propogation life’, Engineering Facture Mechanics , 51(1), pp. 1 – 18. Ottersböck, M. J., Leitner, M. and Stoschka, M. (2021) ‘Characterisation of actual weld geometry and stress concentration of butt welds exhibiting local undercuts’, Engineering Structures , 240, p. 112266. doi: 10.1016/J.ENGSTRUCT.2021.112266. Peterson, R. E. (1959) ‘Notch sensitivity’, in Sines, G. and Waisman, J. L. (eds) Metal Fatigue . New York: McGraw-Hill, pp. 293 – 306. Renken, F. et al. (2021) ‘An algorithm for statistical evaluation of weld toe geometries using laser triangulation’, International Journal of Fatigue , 149, p. 106293. doi: 10.1016/J.IJFATIGUE.2021.106293. Renken, F. et al. (2025) ‘Round -robin study on the determination of weld geometry parameters —part B: analysis of welded specimen’, Welding in the World , pp. 1 – 16. doi: 10.1007/S40194-025-02033-2/FIGURES/14. Schork, B. et al. (2017) ‘The effect of the local and global weld geometry as well as material defects on crack initiation and fatigue strength’, Engineering Fracture Mechanics , 198, pp. 103 – 122. doi: https://doi.org/10.1016/j.engfracmech.2017.07.001. Schork, B. et al. (2020) ‘Effect of the parameters of weld toe geometry on the FAT class as obtained by means of fracture mechanics -based simulations’, Welding in the World , 64(6), pp. 925 – 936. doi: 10.1007/S40194-020-00874-7/FIGURES/14. Schubnell, J. et al. (2020) ‘Influence of the optical measurement technique and evaluation approach on the determination of local weld geometry
Made with FlippingBook flipbook maker