PSI - Issue 75

Tomáš Karas et al. / Procedia Structural Integrity 75 (2025) 150–157

157

8

T. Karas et al. / Structural Integrity Procedia 00 (2025) 000–000

4. Conclusion

This study continues the investigation of the application of the self-heating method to characterise fretting fatigue in 42CrMo4 + QT steel. The research explored the influence of load ratio ( R ) and pad geometry on fretting fatigue behaviour and self-heating response. The results indicate that samples subjected to load ratio R = 0 exhibit significantly lower fatigue life compared to those tested under R = − 1. The LinExp method for post-processing self-heating fatigue data showed relatively good agreement with conventionally measured fretting fatigue limits, with a maximum error of around 10%. Regarding fracture initiation prediction, both the Dang Van and Papuga QCP criteria performed well, although the QCP method displays closer agreement with the observed fractography data. These findings demonstrate the potential of the self-heating method as a tool to evaluate fretting fatigue limits in 42CrMo4 + QT steel. The study also highlights the importance of considering load ratio and pad geometry when analysing fretting fatigue behaviour.

Acknowledgement

The authors would like to acknowledge the support from the Czech Science Foundation within the 23-06130K project.

References

Bo¨hme, S.A., Papuga, J., 2024. Advancements in stress-based multiaxial fatigue prediction: A data-driven approach and a new criterion. Fatigue & Fracture of Engineering Materials & Structures 47, 2139–2155. doi: https://doi.org/10.1111/ffe.14281 . FE-Safe 2019, . Volume 2 - Fatigue Theory Reference. Safe Technology Limited. 2002. Huang, J., Pastor, M.L., Garnier, C., Gong, X., 2017. Rapid evaluation of fatigue limit on thermographic data analysis. International Journal of Fatigue 104, 293–301. doi: https://doi.org/10.1016/j.ijfatigue.2017.07.029 . Kohout, J., Veˇchet, S., 2001. A new function for fatigue curves characterization and its multiple merits. International Journal of Fatigue 23, 175–183. doi: https://doi.org/10.1016/S0142-1123(00)00082-7 . La Rosa, G., Risitano, A., 2000. Thermographic methodology for rapid determination of the fatigue limit of materials and mechanical components. International Journal of Fatigue 22, 65–73. doi: https://doi.org/10.1016/S0142-1123(99)00088-2 . Luong, M.P., 1998. Fatigue limit evaluation of metals using an infrared thermographic technique. Mechanics of Materials 28, 155–163. doi: https: //doi.org/10.1016/S0167-6636(97)00047-1 . Matusˇu˚, M., Dzˇuberova´, L., Papuga, J., Rosenthal, J., Sˇ imota, J., Bera´nek, L., 2024. Fatigue analysis and heat treatment comparison of addi tively manufactured specimens from alsi10mg alloy. International Journal of Fatigue 185, 108357. doi: https://doi.org/10.1016/j. ijfatigue.2024.108357 . Matusˇu˚, M., Papuga, J., Mzˇourek, M., 2022. Fatigue strength estimation of 42crmo4 + qt from the temperature evolution during cyclic loading. Pro cedia Structural Integrity 42, 102–109. doi: https://doi.org/10.1016/j.prostr.2022.12.012 . 23 European Conference on Fracture. Nesla´dek, M., Marcell Enzveiler Marques, J., Papuga, J., Fojt´ık, F., Ma´ra, V., Trojan, K., Doubrava, K., 2024. Fretting fatigue of 42crmo4 + qt steel: Experimental and numerical assessment. International Journal of Fatigue 189, 108575. doi: https://doi.org/10.1016/j.ijfatigue. 2024.108575 . Nesla´dek, M., Pacetti, L., Papuga, J., 2022. Validation of fatigue criteria under fretting fatigue conditions. International Journal of Fatigue 161, 106895. doi: https://doi.org/10.1016/j.ijfatigue.2022.106895 . Nesla´dek, M., Sˇ paniel, M., 2017. An abaqus plugin for fatigue predictions. Advances in Engineering Software 103, 1–11. doi: https://doi. org/10.1016/j.advengsoft.2016.10.008 . special Issue Civil-Comp Parallel, Distributed and Cloud Computing. Papuga, J., Mzˇourek, M., Matusˇu˚, M., Ma´ra, V., Cˇ apek, J., 2023. Investigation of the size e ff ect on 42crmo4 + qt steel in the high-cycle fatigue domain part i: Experimental campaign. International Journal of Fatigue 175, 107743. doi: https://doi.org/10.1016/j.ijfatigue. 2023.107743 . Suchy´, L., Knabner, D., Hasse, A., 2022. Fretting fatigue of multiaxially loaded shrink-fit connections – the e ff ect of material sensitivity on fatigue strength. Procedia Structural Integrity 42, 1128–1136. doi: https://doi.org/10.1016/j.prostr.2022.12.144 . 23 European Conference on Fracture. Susmel, L., 2009. Multiaxial notch fatigue. Elsevier. Zaeimi, M., De Finis, R., Palumbo, D., Galietti, U., 2024. Fatigue limit estimation of metals based on the thermographic methods: A comprehensive review. Fatigue & Fracture of Engineering Materials & Structures 47, 611–646. doi: https://doi.org/10.1111/ffe.14206 .

Made with FlippingBook flipbook maker