PSI - Issue 75
Thomas Constant et al. / Procedia Structural Integrity 75 (2025) 660–676 Author name / Structural Integrity Procedia 00 (2025) 000–000
676
17
References
Au, S.K., Beck, J.L., 2001. Estimation of small failure probabilities in high dimensions by subset simulation. Probabilistic Engineering Mechanics , 16(4), 263–277. https: // doi.org / 10.1016 / S0266-8920(01)00019-4. Hasofer, A., Lind, N., 1974. Exact and invariant second moment code format. Journal of Engineering Mechanics , 100, 111–121. https: // doi.org / 10.1061 / JMCEA3.0001848. Kiureghian, A., Lin, H.Z., Hwang, S.J., 1987. Second-order reliability approximations. Journal of Engineering Mechanics , 113, 1208–1225. https: // doi.org / 10.1061 / (ASCE)0733-9399(1987)113:8(1208). Echard, B., Gayton, N., Lemaire, M., 2011. AK-MCS: An active learning reliability method combining Kriging and Monte Carlo simulation. Structural Safety , 33, 145–154. https: // doi.org / 10.1016 / j.strusafe.2011.01.002. Huang, X., Chen, J., Zhu, H.P., 2016. Assessing small failure probabilities by AK–SS: An active learning method combining Kriging and Subset Simulation. Structural Safety , 59, 86–95. https: // doi.org / 10.1016 / j.strusafe.2015.12.003. Gaspar, B., Leira, B., Guedes Soares, C., 2014. System reliability analysis by Monte Carlo based method and finite element structural models. Journal of O ff shore Mechanics and Arctic Engineering , 136, 031603. https: // doi.org / 10.1115 / 1.4025871. Melchers, R.E., 1989. Importance sampling in structural system. Structural Safety , 6, 3–10. https: // doi.org / 10.1016 / 0167-4730(89)90003-9. Li, G., Jiang, L., Lu, B., He, W., 2022. AK-HMC-IS: A novel importance sampling method for e ffi cient reliability analysis based on active Kriging and hybrid Monte Carlo algorithm. Journal of Mechanical Design , 144, 1–41. https: // doi.org / 10.1115 / 1.4054994. Constant, T., Mattrand, C., Fouche´, L., Gayton, N., 2025. Adaptative Kriging for reliability analysis of sequential simulation models of fatigue-loaded systems. ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems, Part B: Mechanical Engineering , 1–51. https: // doi.org / 10.1115 / 1.4068419. Imbert, J.F., Analyse des structures par e´le´ments finis , 3 e e´dition, Chapitre 11, p. 412. Socie, D.F., Marquis, G.B., 2000. Multiaxial Fatigue . SAE International. ISBN: 0-7680-0453-5. Brown, M.W., Miller, K.J., 1973. A theory for fatigue under multiaxial stress-strain conditions. Proceedings of the Institution of Mechanical Engineers , 187, 745–756. Wang, Z., Shafieezadeh, A., 2019. ESC: an e ffi cient error-based stopping criterion for kriging-based reliability analysis methods. Structural and Multidisciplinary Optimization , 59, 10.1007 / s00158-018-2150-9. Rabitz, H., and Alis, O., 1999. General foundations of high dimensional model representations. J. Math. Chem. , 25, 197–233. https: // doi.org / 10.1023 / A:1019188517934. Marrel, A., and Iooss, B., 2024. Probabilistic surrogate modeling by Gaussian process: A review on recent insights in estimation and validation. Reliability Engineering and System Safety , 110094. https: // doi.org / 10.1016 / j.ress.2024.110094. Zhang, D., Li, Y., Fu, Z., Wang, Y., Xu, K., 2024. Fatigue reliability analysis of bogie frames considering parameter uncertainty. International Journal of Fatigue , 190, 108632. https: // doi.org / 10.1016 / j.ijfatigue.2024.108632. Salifu, S., Olubambi, P.A., 2024. A review of fatigue failure and life estimation models: From classical methods to innovative approaches. Science, Engineering and Technology , 4(2), Online First. https: // doi.org / 10.54327 / set2023 / v4.i2.140.
Made with FlippingBook flipbook maker