PSI - Issue 75
Sgamma M. et al. / Procedia Structural Integrity 75 (2025) 709–718 Author name / Structural Integrity Procedia 00 (2025) 000–000
718
10
[20] Gao, D., Yao, W., Wen, W., Huang, J., 2021b. A multiaxial fatigue life prediction method for metallic material under combined random vibration loading and mean stress loading in the frequency domain. International Journal of Fatigue 148, 106235. doi: 10.1016/J.IJFATIGUE.2021. 106235 . [21] He, L., Xu, L., Itoh, T., 2023. Novel fatigue life prediction approach combined with rain-flow cycle counting process for random multiaxial non-proportional loading. Fatigue and Fracture of Engineering Materials and Structures 46, 4392–4405. doi: 10.1111/ffe.14136 . [22] Hobbacher, A.F., 2009. The new IIW recommendations for fatigue assessment of welded joints and components - A comprehensive code recently updated. International Journal of Fatigue 31, 50–58. doi: 10.1016/j.ijfatigue.2008.04.002 . [23] Kandil, F.A., Brown, M.W., J., M.K., 1982. Biaxial low-cycle fatigue failure of 316 stainless steel at elevated temperatures., in: Mechanical Behaviour and Nuclear Applications of Stainless Steel at Elevated Temperatures, Maney Pub., London, UK. [24] Luo, P., Yao, W., Susmel, L., 2020. An improved critical plane and cycle counting method to assess damage under variable amplitude multiaxial fatigue loading. Fatigue and Fracture of Engineering Materials and Structures 43, 2024–2039. doi: 10.1111/ffe.13281 . [25] Macha, E., Niesłony, A., 2012. Critical plane fatigue life models of materials and structures under multiaxial stationary random loading: The state-of-the-art in Opole Research Centre CESTI and directions of future activities. International Journal of Fatigue 39, 95–102. doi: 10.1016/ j.ijfatigue.2011.03.001 . [26] Mrsˇnik, M., Slavicˇ, J., Boltezˇar, M., 2016. Multiaxial vibration fatigue—a theoretical and experimental comparison. Mechanical Systems and Signal Processing 76, 409–423. [27] Niesłony, A., Bo¨hm, M., 2013. Mean stress e ff ect correction using constant stress ratio S-N curves. International Journal of Fatigue 52, 49–56. doi: 10.1016/j.ijfatigue.2013.02.019 . [28] Niesłony, A., Bo¨hm, M., Owsin´ski, R., 2020. Formulation of multiaxial fatigue failure criteria for spectral method. International Journal of Fatigue 135, 105519. doi: 10.1016/j.ijfatigue.2020.105519 . [29] Niesłony, A., Ru˚zˇicˇka, M., Papuga, J., Hodr, A., Balda, M., Svoboda, J., 2012. Fatigue life prediction for broad-band multiaxial loading with various PSD curve shapes. International Journal of Fatigue 44, 74–88. doi: 10.1016/j.ijfatigue.2012.05.014 . [30] Pei, X., Cao, Y., Gu, T., Xie, M., Dong, P., Wei, Z., Mei, J., Zhang, T., 2024. Generalizing multiaxial vibration fatigue criteria in the frequency domain: A data-driven approach. International Journal of Fatigue 186, 108390. doi: 10.1016/j.ijfatigue.2024.108390 . [31] Pitoiset, X., Rychlik, I., Preumont, A., 2001. Spectral methods to estimate local multiaxial fatigue failure for structures undergoing random vibrations. Fatigue and Fracture of Engineering Materials and Structures 24, 715–727. doi: 10.1046/j.1460-2695.2001.00394.x . [32] Rychlik, I., 1987. A new definition of the rainflow cycle counting method. International Journal of Fatigue 9, 119–121. URL: https://www. sciencedirect.com/science/article/pii/0142112387900545 , doi: https://doi.org/10.1016/0142-1123(87)90054-5 . [33] Sgamma, M., Barsanti, M., Bucchi, F., Frendo, F., 2025. Analytical study on the dynamic response of single-dof mechanical systems to stationary non-gaussian random loads. Mechanical Systems and Signal Processing 232, 112694. [34] Sgamma, M., Bucchi, F., Frendo, F., 2022. On the influence of mean value on random fatigue damage computation, in: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, American Society of Mechanical Engineers. p. V002T02A045. [35] Sgamma, M., Chiocca, A., Bucchi, F., Frendo, F., 2023. Frequency analysis of random fatigue: Setup for an experimental study. Applied Research , e202200066doi: 10.1002/appl.202200066 . [36] Sgamma, M., Chiocca, A., Frendo, F., 2024a. Rapid and accurate semi-analytical method for the fatigue assessment with critical plane methods un der non-proportional loading and material plasticity. International Journal of Fatigue 182, 108191. URL: https://linkinghub.elsevier. com/retrieve/pii/S0142112324000495 , doi: 10.1016/J.IJFATIGUE.2024.108191 . [37] Sgamma, M., Palmieri, M., Barsanti, M., Bucchi, F., Cianetti, F., Frendo, F., 2024b. Study of the response of a single-dof dynamic system under stationary non-gaussian random loads aimed at fatigue life assessment. Heliyon . [38] Shamsaei, N., Gladskyi, M., Panasovskyi, K., Shukaev, S., Fatemi, A., 2010. Multiaxial fatigue of titanium including step loading and load path alteration and sequence e ff ects. International Journal of Fatigue 32, 1862–1874. [39] Susmel, L., 2010. A simple and e ffi cient numerical algorithm to determine the orientation of the critical plane in multiaxial fatigue problems. International Journal of Fatigue 32, 1875–1883. doi: 10.1016/j.ijfatigue.2010.05.004 . [40] Tovo, R., 2002. Cycle distribution and fatigue damage under broad-band random loading. International Journal of Fatigue 24, 1137–1147. doi: 10.1016/S0142-1123(02)00032-4 . [41] Wang, Y.C., Xu, L., He, L., Cheng, L.Y., Chang, S., Yoshikawa, S., Tu, S.T., Itoh, T., 2024. Fatigue behaviors and life evaluation of AISI304 stainless steel under non-proportional multiaxial random loading. International Journal of Fatigue 186, 108417. doi: 10.1016/j.ijfatigue. 2024.108417 .
Made with FlippingBook flipbook maker