PSI - Issue 75
Laurent Gornet et al. / Procedia Structural Integrity 75 (2025) 129–139 Author name / Structural Integrity Procedia (2025)
136
8
References
Demilly K., J Cavoit, Y Marco, G Moreau, G Dolo, N Carrere, 2024. Estimating fatigue life of carbon/epoxy composites: A rapid method coupling thermo‐mechanical analysis and residual strength , Fatigue & Fracture of Engineering Materials & Structures 47 (6), 1856-1867. Doudard C., S Calloch, F Hild, S Roux, 2010. Identification of heat source fields from infrared thermography: Determination of ‘self - heating’in a dual-phase steel by using a dog bone sample. Mechanics of Materials 42 (1), 55-62. Doudar C., Calloch S., Hild F., Cugy P., Galtier A. 2004. Identification of the scatter in high cycle fatigue from temperature measurements. Comptes Rendus Mécanique, 332,795-801. Gornet L., O Westphal, C Burtin, JL Bailleul, P Rozycki, L Stainier, 2013 . Rapid determination of the high cycle fatigue limit curve of carbon fiber epoxy matrix composite laminates by thermography methodology: tests and finite element simulations, Procedia Engineerin g 66, 697 704. Krasnobrizha A., P Rozycki, L Gornet, P Cosson, 2016. Hysteresis behaviour modelling of woven composite using a collaborative elastoplastic damage model with fractional derivatives. Composite Structures 158, 101 - 111 . La Rosa G., Risitano A., 2000. Thermographic methodology for rapid determination of the fatigue limit of materials and mechanical components. International Journal of Fatigue, vol. 22, 65 - 73 . Luong MP, Dang Van K.,1992. Infrared thermographic evaluation of fatigue limit in metals. 27th QIRT Eurotherm Seminar, Paris France. Risitano A., Clienti C., Risitano G., 2011. Determination of fatigue limit by mono axial tensile specimens using thermal analysis. Key Engineering Materials 452, 361-364. Muller L., JM Roche, A Hurmane, D Pacou, V Bonnand, C Peyrac, L. Gornet, 2018. Experimental monitoring of the self-heating properties of thermoplastic composite materials, Procedia Engineering 213, 183-19. Muller L., JM Roche, A Hurmane, FH Leroy, C Peyrac, L Gornet, 2021.Investigation of self-heating and damage progression in woven carbon fibre composite materials, following the fibres direction, under static and cyclic loading. Journal of Composite Materials 55 (26), 3909-3924. Naderi M., Kahirdeh A., Khonsari M., 2012. Dissipated thermal energy and damage evolution of Glass/Epoxy using infrared thermography and acoustic emission. Composites: Part B, vol. 43, 1613-1620. Westphal O., 2014. Analyse thermomécanique de l’endommagement de stratifiés carbone époxy : détermination de la limite d’endurance à partir d’essais d’auto - échauffement. Thèse, Ecole Centrale Nantes .
Appendix A. The code of the Gornet- fatigue’s model (Python, TensorFlow, Keras)
import numpy as np import matplotlib.pyplot as plt from scipy.optimize import curve_fit # === Experimental data === logN_data = np.array([
0.0000000001, 1., 3.82979, 4.76596, 5.00304, 5.30699, 5.38602, 5.53799, 5.59878, 5.90881, 6.26748, 6.44985], dtype=np.float64) N = 10 ** logN_data S = np.array([699, 699, 460.26, 460.26, 464.85, 441.89, 418.94, 439.6, 451.0, 430.42, 401.72, 418.94], dtype=np.float64) # === Imposed parameters === S_sat_fixed = 699 S0_sat_fixed = 370.73 # === Gornet’s model === def stromeyer_modified(N, c, b, d): return (S_sat_fixed - S0_sat_fixed) / ((1 + c * N**b)**d) + S0_sat_fixed # === initiales Estimations === c_init = 1e-6
b_init = 2.0 d_init = 1.0 # === Ajustement des paramètres === popt, _ = curve_fit( stromeyer_modified, N, S, p0=[c_init, b_init, d_init], bounds=([1e-10, 0.5, 0.1], [1e3, 10, 5])) c_fit, b_fit, d_fit = popt # === Prediction === N_test = np.logspace(0, 9, 300) S_pred = stromeyer_modified(N_test, *popt) # === Response === plt.figure(figsize=(8, 6)) plt.semilogx(N, S, 'ro', label='Experimental data')
Made with FlippingBook flipbook maker